期刊文献+

基于MPS和多重模板的多孔介质重构方法 被引量:3

Reconstruction of Porous Media Using MPS and Multiple-grid Templates
下载PDF
导出
摘要 在油汽探测的研究中,提高探测的准确性,结多孔介质三维重构在油气探测有着重要意义,用规方法对多孔介质中长的孔隙通道和复杂的孔隙空间形状重构效果较差。为了提高探测精度,提出一种基于多点地质统计(MPS)和多重模板的多孔介质三维重构方法。将微米精度的多孔介质体数据作为训练图像,把逐渐密集化的网格作为多重数据模板提取其空间结构特征,通过MPS将这些特征信息复制到待模拟区域得到多孔介质的拓扑结构,实现多孔介质三维重构。方法应用于砂岩样品三维信息重构。进行仿真的结果表明,方法有效地重构了砂岩中复杂的孔隙空间形状。证明了重构的多孔介质具有与实际情况的结构特征相似,有效地提高了重构的精度。 The three-dimensional reconstruction of porous media is quite significant for the exploration of oil and natural gas.However,general structure-making methods often fail to describe the long porous space and complicated porous structures.Therefore,a method is proposed using multiple-point geostatistics(MPS) and multiple-grid templates to reconstruct porous media.A 3D training image is obtained from the volume data of porous media with the resolution of microns.The gradually finer grids are taken as multiple data templates to extract characteristics of porous space,which are "copied" by MPS to the regions to be reconstructed,realizing the final reconstruction.The experiment based on the 3D reconstruction of sandstone samples proves that this method reconstructs the complicated porous structure in sandstone well.Comparison of porosity and variogram curves also demonstrates that the characteristics of porous media reconstructed by this method are similar to those of real porous media in the volume data of sandstone samples.
出处 《计算机仿真》 CSCD 北大核心 2011年第4期238-241,260,共5页 Computer Simulation
基金 浙江省自然科学基金项目(Y1080379) 浙江省教育厅科研项目(Y200803026)
关键词 多点地质统计法 多孔介质 多重模板 训练图像 条件概率分布函数 Multiple-point geostatistics Porous media Multiple-grid template Training image Conditional probability density function
  • 相关文献

参考文献7

二级参考文献50

  • 1[1]Deutsch C V, Journel A G. GSLIB:Geostatistical Software Library and User's Guide[M]. New York: Oxford University Press,1992. 71~72
  • 2[2]Journel W Xu, T Tran. Integrating seismic data in reservoir modeling:The collocated CoKriging alternative[J]. Society Petroleum Engineers, 1992,Paper 24742:833~842
  • 3[3]P Doyen, T Guidish. Monte-Carlo simulation of lithology from seismic data in a channel sand reservoir[J]. Society Petroleum Engineers, 1989, Paper 19588:715~721
  • 4[4]Henning More. Bayesian Kriging-Merging observation and qualified guesses in Kriging[J]. Mathematical Geology,1987,19(1):25~39
  • 5[5]Hartigan J A. Linear Bayesian methods[J]. Journal of Royal Statistical Association(Series B),1969,31:446~454
  • 6[6]J Pouzet. Estimation of a surface with known discontinuities for automatic contouring purposes[J]. Mathematical Geology,1980,12(6):559~575
  • 7Caers J and Journel A G.1998.Stochastic reservoir simulation using neural networks trained on outcrop data.SPE paper No.49026.
  • 8Deutsch C V.1992.Annealing techniques applied to reservoir modeling and the integration of geological and engineering(well test) data:[Doctoral dissertation].Stanford University,306.
  • 9Guardiano F and Srivastava R M.1993.Multivariate geostatistics: beyond bivariate moments.In: Soares A (ed).Geostatistics-Troia.Kluwer Academic Publications,Dordrecht,113~114.
  • 10Haldorsen H and Damsleth E.1990.Stochastic modeling.Journal of Petroleum Technology,42(4): 404~412.

共引文献150

同被引文献34

  • 1姚军,赵秀才,衣艳静,陶军.数字岩心技术现状及展望[J].油气地质与采收率,2005,12(6):52-54. 被引量:91
  • 2尹艳树,吴胜和.储层随机建模研究进展[J].天然气地球科学,2006,17(2):210-216. 被引量:57
  • 3赵秀才,姚军.数字岩心建模及其准确性评价[J].西安石油大学学报(自然科学版),2007,22(2):16-20. 被引量:31
  • 4赵秀才,姚军,陶军,衣艳静.基于模拟退火算法的数字岩心建模方法[J].高校应用数学学报(A辑),2007,22(2):127-133. 被引量:38
  • 5Ardiano F, Srivastava R M. Multivariate geostatistics beyond bivariatemoments, geostatis-troia [J] . Kluwer Publications, Dordrecht 1993, 45: 113-114.
  • 6Strebelle S, Journel A G. Reservoir modeling using multi-point statistics [-J . SPE71324, 2001.
  • 7Zhang T F. Filtebased training pattern classification for spatial simulation [-D . California Stanford University, 2006.
  • 8Strebelle S. Sequential simulation drawing structures from training images [D] . California: Stanford University, 2000.
  • 9Strebelle S. Conditional simulation of complex geological structures using multi-point statistics [J] . Mathematical Geology, 2002 34 (1): 1-11.
  • 10Tran T. Improving variogram reproduction on dense simulation grids [J Computers and Geosciences, 1994, 20 (7) 1161-1168.

引证文献3

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部