期刊文献+

基于改进FCM聚类算法的火灾图像分割 被引量:7

Segmentation of Fire Image Based on Improved FCM Clustering Algorithm
下载PDF
导出
摘要 研究火灾识别问题,火灾图像分割是火灾特征提取和识别的前提,其分割效果直接影响火灾识别的准确率。针对现有分割方法中存在的经验阈值难以确定和因彩色信息丢失导致分割不准确等问题,为了准确识别火灾图像,提出一种改进的FCM聚类的火灾图像分割方法。方法选用符合人眼视觉特性的HSI颜色空间,根据数据分布特点确定色度分量H和亮度分量I的初始聚类中心,分别在直方图特征空间进行模糊聚类处理,并利用像素的空间信息对模糊隶属度函数做了改进,最后在由两分量的模糊隶属度组成的二维特征空间上进行火灾图像分割。实验结果表明,算法可排除高亮区域的干扰,准确分割出火焰区域,为后续的火灾识别提供重要依据。 Fire image segmentation is the premise of feature extractions and recognitions,which decides the accuracy of the fire recognition.To solve the inaccurate segmentation problem that experience threshold is difficult to determine and color information is lost.A modified FCM algorithm for fire image segmentation is proposed in this paper.The algorithm is based on HSI color space,initial clustering centers of H component and I component are selected according to the data distribution.Then,clustering the components of H and I is implemented in histogram feature space,the membership function is improved with the pixel's spatial feature.Finally,the algorithm is performed in the two-dimensional features space which is constructed with the image pixel membership for H and I component.The results show that the new algorithm can exclude the highlight interference region and extract flame region accurately,which is very important for the fire detection.
出处 《计算机仿真》 CSCD 北大核心 2011年第4期246-249,共4页 Computer Simulation
关键词 图像分割 模糊C均值 聚类 火灾图像 Image segmentation FCM Clustering Fire image
  • 相关文献

参考文献6

二级参考文献25

  • 1吴景岚,朱文兴.基于K均值的迭代局部搜索聚类算法[J].计算机工程与应用,2004,40(22):37-41. 被引量:8
  • 2李桂芝,安成万,张永谦,涂序彦,谭民.基于模糊熵和RPCL的彩色图像聚类分割[J].中国图象图形学报,2005,10(10):1264-1268. 被引量:6
  • 3J C Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well - separated clusters[ J]. J. Cybemet, 1973, 3(3) : 32 -57.
  • 4J C Bezdek. Pattem Recognition with Fuzzy Objective Function Algorithms[ M ]. New York : Plenum Press, 1981.
  • 5A K JAN, N MURTYM, P J FLYNN. Data clustering A review [ J]. ACM computer Survey, 1999,31 (3) :264 - 323.
  • 6Young W on lin et. al. On the color image segmentation algorithm based on the thresh holding and the fuzzy cmeans techniques [ J ]. Pattern Recongniton, 1990, 23(6) :935 -952.
  • 7J KE. Fast Accurate Fuzzy Clustering through Reduced Precision [ C]. Master's Thesis University of South Florida, 1999.
  • 8Ming Chuan Hung Don_Lin Yang. An Efficient Fuzzy C - means Clustering Algorithm [ C ]. Proceedings of IEEE International Conference on Data Mining SanJose. 2001. 225 -232.
  • 9P R NIKHIL, J C BEZDEK. On cluster validity for the fuzzy C - means model[ J ]. IEEE Transactions on Fuzzy Systems, 1995,3 ( 3 ) : 370 - 379.
  • 10Y A Tolias, S M Panas. Image Segmentation by a Fuzzy Clustering Algorithm using Adaptive Spatially Constrained Membership Functions[J]. IEEE Transactions on Systems, Man and Cybemetics, 1998, 28(3) :359 -369.

共引文献74

同被引文献65

  • 1彭红星,邹湘军,郭艾侠,熊俊涛,陈燕.基于探索性数据分析的柑橘部位颜色模型分析与识别[J].农业机械学报,2013,44(S1):253-259. 被引量:5
  • 2方磊,李春苗,龚文宗,王军培.阈值分割法处理土微结构图像质量评价[J].地下空间与工程学报,2013,9(S2):1873-1876. 被引量:2
  • 3李国友,李惠光,吴惕华.改进的PCNN与Otsu的图像增强方法研究[J].系统仿真学报,2005,17(6):1370-1372. 被引量:9
  • 4田有文,李天来,李成华,朴在林,孙国凯,王滨.基于支持向量机的葡萄病害图像识别方法[J].农业工程学报,2007,23(6):175-180. 被引量:84
  • 5兆长胜.室内条件下基于视频序列的火灾烟雾检测算法研究[D].吉林大学,2010.
  • 6Qixlaojun, Ebert J, Shipley J. Computer vision based method for fire detection in color videos[ J ]. Internation- al Journal of Imaging and Robotics, 2009, 2(S09) : 22- 34.
  • 7Kaplan L M. Improved SAR target detection via extended fractal features[ J]. IEEE Transactions on Aerospace and Electronic. Systems,2001,37 (2) : 436-451.
  • 8Celik T, Ma Kaikuang. Computer vision based fire detec- tion in color images [ J ]. Pattern Recognition, 2008, 34 (12) : 258-263.
  • 9Mandelbrot B B, Ness J W V. Fractional brownian mo- tions, fractional noise and applications [ J ]. SIAM Re- view, 1968, (10) : 422-437.
  • 10CHO S I,ChANG S J,Kim Y Y,et al. Development of a three -degrees-of-frecdom robot for harvesting lettuce using ma- chine vision and fuzzy logic control [ J ]. Biosystems Engi- neering, 2002, 82(2): 143-149.

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部