期刊文献+

SVD和DWT数字水印算法的应用研究 被引量:11

Digital Watermarking Algorithm Based on SVD and DWT
下载PDF
导出
摘要 研究数字图像版权保护问题,由于数字媒体在网上易被复制篡改。针对单纯奇异值分解或小波变换水印算法均存在抵抗攻击差的难题,为了更好的保护数字图像版权,提了一种奇异值分解与小波变换相结合的数字水印算法。首先对水印图像进行置乱处理并对原始图像进行分块,从中找到符合要求的最佳水印嵌入子块,然后对所选择的最佳子块进行小波变换,对子块的低频系数进行奇异值分解,最后将水印嵌入各子块的奇异值中进行仿真。结果表明,水印算法能够很好的抵抗多种攻击,水印具有很好的鲁棒性和不可见性,克服了奇异值分解和小波变换水印算法缺陷,为设计提供了依据。 Digital media copyright protection has become an increasingly important issue,and digital watermarking algorithms have attracted much attention.There are different faults in simple pure using singular value decomposition or wavelet transform watermarking algorithm,therefor,a digital watermarking algorithm combination with singular value decomposition and wavelet transform is proposed.The algorithm firstly scrambles the watermark image and partitions the original image regions according to the requirement of finding the best watermarking embedding sub block,then chooses the best sub block wavelet transform and pairs of low-frequency coefficients of the block singular value decomposition,ultimately embeds the watermarking into each sub-block singular value.Experimental results show that the watermark algorithm can resist many kinds of attacks watermarking very well,has good robustness and not visibility,and solves the contradiction between the robustness and the invisibility.
作者 陈宏 胡宁静
出处 《计算机仿真》 CSCD 北大核心 2011年第4期295-298,378,共5页 Computer Simulation
关键词 数字水印 奇异值分解 小波变换 Digital watermarking Singular value decomposition(SVD) Discrete wavelet transform(DWT)
  • 相关文献

参考文献4

二级参考文献25

  • 1陈明举,陈善学.一种基于小波变换与奇异分解的图像水印算法[J].信息与电子工程,2007,5(1):57-61. 被引量:11
  • 2张仁昌,耿国华.基于奇异值分解和小波变换的抗几何失真数字水印新方法[J].计算机应用与软件,2007,24(6):78-81. 被引量:10
  • 3Petitcolas F A P, Anderson R J, Kuhn M G. Attacks on copyright marking systems [A]. In: Proceedings of Workshop Information Hiding[C]. Portland, OR, USA, 1998: 218-238.
  • 4Herley C. Why watermarking is nonsense [J]. IEEE Signal Processing Magazine, 2002, 19(5) : 10-11.
  • 5Braudaway G W, Minter F. Automatic recovery of invisible image watermarks from geometrically distorted image[A]. In:Proceedings of SPIE Security and Watermarking of Multimedia Contents Ⅱ [C]. San Jose, CA, USA, 2000:74-81.
  • 6Ruanaidh J J. K. O. , Pun T. Rotation, scale and translation invariant spread spectrum digital image watermarking[J]. Signal Processing, 1998, 66(3): 303-317.
  • 7Andrews H, Patterson C. Singular value decomposition(SVD)image coding[J]. IEEE Transactions on Communications, 1976,24(4) : 425-432.
  • 8Liu R, Tan T. An SVD-based watermarking scheme for protecting rightful ownership [J]. IEEE Transactions on Multimedia, 2002,4(1) : 121-128.
  • 9Leon S J. Linear Algebra with Applications [M]. New York:Macmillan, 1986: 343-356.
  • 10Horn R A, Johnson C R. Matrix Analysis [M]. Cambridge:Cambridge University, 1985 : 431-432.

共引文献291

同被引文献77

引证文献11

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部