期刊文献+

相似背景下的运动目标自动跟综问题研究

Research on Moving target tracking Under Similar Backgrounds
下载PDF
导出
摘要 研究视频图像中准确实现运动目标跟踪问题,要求在视频图像中找到目标确切位置,并反馈给跟踪系统。针对传统基于特征匹配的跟踪,当被跟踪物体所处环境中存在颜色、形状接近的物体时,会出现像素特征误匹配,造成运动目标跟踪错误率较高。提出基于Markov Chain Monte Carlo数据关联的运动目标跟综方法。通过建立像素概率模型,将运动目标跟踪问题公式化,运用MCMC方法对后验概率进行采样估计,避免了模型匹配像素点的不确定性。实验证明,运动目标跟踪方法实现了在与自身相似背景下的准确跟踪,有效降低了跟踪错误率,取得了满意的效果。 Researching the target tracking of the video images.In traditional feature matching based tracking method,when the tracked object is similar in colors and shapes to other objects in the environment,,the pixel features mismatch can appear,which causes higher target tracking error rates.This paper puts forward a moving object tracking method based on Markov Chain Monte Carlo data relating.By establishing pixel probability model,moving target tracking is formulazed,and by using the method of MCMC to estimate the posteriori probability,the uncertainty of model matching pixel is avoided.Experiments have proved that this moving object tracking method can realize accurate tracking under the background similar to the moving object,reduce the tracking error rate,and achieve satisfactory results.
作者 杨华庆
出处 《计算机仿真》 CSCD 北大核心 2011年第4期299-303,共5页 Computer Simulation
关键词 概率模型 运动目标跟踪 概率估计 Probabilistic model Moving object tracking Probability estimates
  • 相关文献

参考文献6

二级参考文献32

  • 1刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3S Haritaoglu,D Harwood and L S Davis.W4:Real-Time Surveillance of People and Their Activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000.
  • 4H Tao,H S Sawhney and R Kumar.A Sampling Algorithm for Tracking Multiple Objects[C].Proc.IEEE Workshop Vision Algorithms,1999.
  • 5D Harwood and L S Davis.Multiple people detection and tracking using silhouettes[J].In IEEE International Workshop on Visual Surveillance,June 1999.6-13.
  • 6N Oliver,B Rosario and A Pentland.A Bayesian computer vision system for modeling human interactions[C].International Conference on Vision Systems,January 1999.
  • 7Baumberg and D Hogg.An efficient method for contour tracking using active shape models[J].In IEEE Workshop on Motion of Non-rigid and Articulated Objects,November 1994.194-199.
  • 8A J Lipton,H Fujiyoshi and R S Patil.Moving target classification and tracking from real-time video[J].In DARPA Image Understanding Workshop,November 1998.129-136.
  • 9S J McKenna.Tracking Groups of People[J].Computer Vision and Image Understanding,2000.
  • 10Todd K Moon.The Expectation-Maximization Algorithm[J].IEEE Signal Processing Magazine,1996.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部