期刊文献+

一种改进性能自适应ICA算法研究 被引量:3

Performance Research of Gradient-Based Optimum Block Adaptive ICA Algorithm In Blind Source Separation
下载PDF
导出
摘要 研究高动态环境必须实时自适应追踪混合矩阵的变化,快速浮点独立成分分析(Fast-ICA)算法,可以达到快速收敛。依据梯度在线学习算法性能更好,但是它的缺点是收敛慢,并且依赖适当的收敛算子的选择。为解决上述问题,提出了一种依据梯度优化块自适应ICA算法(GBOBA/ICA),包含Fast-ICA和依据梯度在线学习两种算法的优点。进行仿真,结果表明,算法在时间变化的信道中(即混合矩阵快速变化时)有良好的性能。 The fast fixed-point independent component analysis(ICA) algorithm has been widely used in various applications because of its fast convergence and superior performance.However,in a highly dynamic environment,real-time adaptation is necessary for tracking the variations of the mixing matrix.In this scenario,the gradient-based online learning algorithm performs better,but its convergence is slow,and depends on a proper choice of convergence factor.This paper develops a gradient-based optimum block adaptive ICA algorithm(GBOBA/ICA) that combines the advantages of the two algorithms.Simulation results for telecommunication applications indicate that the resulting performance is superior under time-varying conditions.
出处 《计算机仿真》 CSCD 北大核心 2011年第4期402-407,共6页 Computer Simulation
基金 中央高校基本科研业务费专项资金项目(HEUCF100826)
关键词 独立成分分析 自适应独立成分分析 快速浮点分析 峭度 自然梯度 盲信号分离 ICA GBOBA-ICA Fast-ICA Kurtosis Nature gradient BSS
  • 相关文献

参考文献13

  • 1张波,谢松云,赵海涛.一种改进ICA算法在脑功能区提取中的应用[J].计算机仿真,2010,27(1):222-225. 被引量:3
  • 2TYang,W Mikhael.Practical Iplementation Issues of ICA BasedImage Rejection for IF Wireless Receivers. SCI 2004 . 2004
  • 3A Belouchrani,MAmin.Jamer mitigation in spread spectrumcommunications using blind source separation. Signal Processing . 2000
  • 4T Yang,W Mikhael.Online Gradient ICA with IndividualizedLearning Rates for Dynamic Enviroment. WSEASTransac-tions on Circuits and systems . 2006
  • 5Malaroiu S,Kiviluoto K,Oja E.Time series prediction with independent component analysis. Proceedings of the International conference on advanced investment technology . 2000
  • 6Comon P.Independent component analysis-a new concept?. Signal Processing . 1994
  • 7Aapo Hyvarinen,Juha Karhunen,Erkki Oja.Independent Component Analysis. . 2001
  • 8Bell AJ,Sejnowski TJ.An information-maximization approach to blind separation and blind deconvolution. Neural Computation . 1995
  • 9Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis. Neural Computation . 1997
  • 10Amari S,Cichocki A,Yang H H.A new learning algorithm for blind source separation. Advances in Neural Information Processing Systems . 1996

二级参考文献4

共引文献2

同被引文献22

  • 1吴琼雁,王强,彭起,任戈,傅承毓.音圈电机驱动的快速控制反射镜高带宽控制[J].光电工程,2004,31(8):15-18. 被引量:35
  • 2许新征.一种结构自适应的径向基函数神经网络[J].计算机工程与应用,2007,43(14):75-76. 被引量:3
  • 3HYVARINEN A, OJA E. A pendent component analysis fast fixed-point algorithm for inde- [J]. Neural Computation, 1997, 9.(7) : 1483-1492.
  • 4HYVARINEN A. Fast and robust fixed-point algorithm for inde- pendent component analysis [J]. IEEE Transactions on NN, 1999, 10(3): 626-634.
  • 5Taiji Ueno, Judit Mate. What goes through the gate? Explo- ring interference with visual feature binding [J]. Neuropsycho-logia, 2011, 49 (6): 1579-1604.
  • 6Sui Jing. An ICA-based method for the identification of optimal fMRI features and components using combined group-discrimi- native techniques [J]. Neurolmage, 2009, 46 (1): 73-86.
  • 7Du Yuhui, Fan Yong. Group information guided ICA for fMRI data analysis [J]. Neurolmage, 2013, 69 (1): 157-197.
  • 8Long Zhiying, Li Rui, Li Yao. Separating 4D multi-task fMRI data of multiple subjects by independent component analysis with projection [J]. Magnetie Resonance Imaging, 2013, 31 (1) : 60-74.
  • 9Zhang Han, Zuo Xinian, Ma Shuangye, et al. Subject orde- rindependent group ICA (SOI-GICA) for functional MRI data analysis [J]. NeuroImage, 2010, 51 (4): 1414-1424.
  • 10Wang Yuqing, Chen Huafu. Analysis of functional networks in- volved in motor execution and motor imagery using combined hie- rarchical dusterin4g analysis and independent component analysis [J]. Magnetic Resonance Imaging, 2010, 28 (5): 653-660.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部