期刊文献+

超顺排碳纳米管阵列、薄膜、长线--通向应用之路 被引量:4

Superaligned arrays, films, and yarns of carbon nanotubes: a road toward applications
原文传递
导出
摘要 碳纳米管阵列是一种通过自组织形成的有序碳纳米管集体,其中的碳纳米管垂直于基底排列起来.超顺排碳纳米管阵列是一种特殊的碳纳米管阵列,其独特之处在于可以直接抽出连续的碳纳米管薄膜.该碳管薄膜仅有几十纳米厚,既透明又导电,其中的碳管沿抽拉方向平行排列.如果让拉出的薄膜通过一挥发性溶剂,或者采用边拉边绞的方式,该碳管薄膜又可以收缩成长线.该收缩后的长线具有高的力学强度和杨氏模量,是电的良导体.这些连续的薄膜和长线,将纳米级的碳管变成宏观可操控的客体,将碳纳米管优异的物理化学性质带到各种宏观应用,打开了一条从纳米世界通向宏观应用之路.该文将介绍超顺排碳纳米管在宏观尺度的应用和基于超顺排碳纳米管的产品,如高分辨透射电子显微镜用碳纳米管微栅,透明柔性可拉伸的碳纳米管薄膜扬声器,碳纳米管触摸屏等. Carbon nanotube (CNT) array is a self-organized highly oriented structure, in which CNTs are vertically aligned on the substrate. Superaligned CNT array is a special kind of vertically aligned CNT array with the unique capability of being converted into pure CNT films or yarns simply by drawing in dry state. The as-converted CNT films are tens of nanometers in thickness, transparent, and highly conductive, with aligned CNTs parallel to the drawing direction. After passing through volatile solutions or being twisted, CNT films can be further condensed into shrunk yarns. These shrunk yarns possess high tensile strengths and Young’s moduli, and are good conductors. The continuous films and yarns have turned nanometer sized CNTs into a manipulable macroscopic object, brought the excellent properties into macroscopic applications, and opened up a road leading from nano-world to macro-world. In this paper, the applications of CNT films and shrunk yarns will be reviewed. Real products made from superaligned CNTs such as TEM grids, loudspeakers, and touch screens will be introduced.
机构地区 清华大学物理系
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2011年第4期390-403,共14页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(批准号:50825201,10704044,90921012) 霍英东教育基金会(编号:111049) 国家重点基础研究发展计划(编号:2007CB935301)资助项目
关键词 碳纳米管 阵列 薄膜 长线 超顺排 carbon nanotube array film yarn superaligned
  • 相关文献

参考文献1

二级参考文献15

  • 1Iijima S 1991 Nature 354 56.
  • 2Jiang K L, Li Q Q and Fan S S 2002 Nature 419 801.
  • 3Zhang X B, Jiang K L, Teng C, Liu P, Zhang L, Kong J, Zhang T H, Li Q Q and Fan S S 2006 Adv. Mater. 18 1505.
  • 4Liu K, Sun Y H, Chen L, Feng C, Feng X F, Jiang K L, Zhao Y G and Fan S S 2008 Nano Lett. 8 700.
  • 5Xiao L, Chen Z, Feng C, Liu L, Bai Z Q, Wang Y, Qian L, Zhang Y Y, Li Q Q, Jiang K L and Fan S S 2008 Nano Lett. 8 4539.
  • 6Zhang L, Feng C, Chen Z, Liu L, Jiang K L, Li Q Q and Fan S S 2008 Nano Lett. 8 2564.
  • 7Liu P, Liu L, Wei Y, Liu K, Chen Z, Jiang K L, Li Q Q and Fan S S 2009 Adv. Mater. 21 3563.
  • 8Zhang H X, Feng C, Zhai Y C, Jiang K L, Li Q Q and Fan S S 2009 Adv. Mater. 21 2299.
  • 9Zhang M, Fang S L, Zakhidov A A, Lee S B, Aliev A E, Williams C D, Atkinson K R and Baughman R H 2005 Science 309 1215.
  • 10Williams C D, Robles R O, Zhang M, Li S, Baughman R H and Zakhidov A A 2008 Appl. Phys. Lett. 93.

同被引文献12

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部