期刊文献+

一种带有沙漏控制的新型EAS实体壳单元 被引量:2

A new stabilized enhanced assumed strain (EAS) solid-shell element
下载PDF
导出
摘要 基于Hu-Washizu变分原理推导了一种带有沙漏控制的实体壳单元的显式有限元列式;采用面内单点积分方案,提高了计算效率;同时引入沙漏控制力,抑制了沙漏现象。基于缩减积分方案,采用B-bar法消除体积自锁,并通过添加七个改善拟应变参数解决了泊松自锁和剪切自锁。采用改善拟应变法消除剪切自锁,使得表达式简洁。利用这种显式实体壳单元模型对3个非线性变形的标准算例进行了计算,并与相关参考文献和有限元软件ABAQUS的计算结果进行了比较。结果表明:该实体壳单元具有较高的计算精度,可有效地解决板壳非线性大变形分析问题,具有很好的工程应用前景。 In this paper,a stabilized solid-shell element is developed in the framework of explicit finite element based on the Hu-Washizu variational principle.A reduced in-plane integration scheme is adopted to improve computational efficiency and a physical stabilization procedure is employed in order to avoid hourglass phenomenon.Furthermore,the B-bar approach is employed to avoid volumetric locking and a seven-parameter enhanced assumed strain method is used to eliminate the Poisson and transverse shear locking pathologies of the element.One of the novelties of this paper is the adopting of enhanced assumed method in resolving transverse shear locking,leading to a more straightforward expression.In order to validate the present method,three benchmark tests involving material and geometrical nonlinearities are calculated with the developed program.The results are in good agreement with those presented in the references and calculated by ABAQUS.
出处 《应用力学学报》 CAS CSCD 北大核心 2011年第2期117-122,211-212,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(50821003) 上海市科委资助项目(09JC1407000 10QH1401400)
关键词 实体壳单元 缩减积分 沙漏控制 改善拟应变法 显式有限元法 solid-shell element,reduced integration,stabilization,enhanced assumed strain method,explicit finite element method
  • 相关文献

参考文献11

  • 1李丽明,李大永,彭颖红,胡丽娟.基于实体壳单元的板壳非线性变形分析[J].上海交通大学学报,2008,42(11):1908-1911. 被引量:3
  • 2Alves de Sousa R J,Natal Jorge R M,Valente R A F,et al.A newvolumetric and shear locking-free 3D enhanced strain element[].Engineering Computations.2003
  • 3Masud,A.,Tham,C.L.Three-dimensional corotational framework for elasto-plastic analysis of multilayered composite shells[].AIAA Journal.2000
  • 4R Hauptmann,K Schweizerhof.A systematic development of ’solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom[].International Journal for Numerical Methods in Engineering.1998
  • 5R J Alves de Sousa,R P R Cardoso,R A FontesValente,J W Yoon,J J Gracio,R M Natal Jorge.Anew one-point quadrature enhanced assumed strain(EAS)solid-shell element with multiple integrationpoints along thickness PartⅠ-Geometrically LinearApplications[].IntJfor NumMethods in Engrg.2005
  • 6RJ Alves de Sousa,RPR Cardoso,RA Fontes Valente,J-W Yoon,JJ Grácio,RM Natal Jorge.A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness—Part II: Nonlinear applications[].International Journal for Numerical Methods in Engineering.2006
  • 7RPR Cardoso,JW Yoon,M Mahardika,S Choudhry,RJ Alves de Sousa,RA Fontes Valente.Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements[].International Journal for Numerical Methods in Engineering.2008
  • 8S Reese.A large deformation solid-shell concept based on reduced integration with hourglass stabilization[].International Journal for Numerical Methods in Engineering.2007
  • 9M Schwarze,S Reese.A reduced integration solid-shell element based on the EAS and the ANS concept—Geometrically linear problems[].International Journal for Numerical Methods in Engineering.2009
  • 10Simo,J. C.,Hughes,T. J. R.On the variational foundations of assumed strain methods[].Journal of Applied Mechanics.1986

二级参考文献13

  • 1李大永,罗应兵,彭颖红,刘守荣.实体壳单元及其在动力显式有限元方法中的应用[J].上海交通大学学报,2006,40(10):1663-1666. 被引量:7
  • 2Hauptmann R, Schweizerhof K. A systematic development of solid shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom[J]. Int J Numer Methods Engrg, 1998, 42(1): 49-69.
  • 3Sze K Y, Yao L Q. A hybrid stress ANS solid-shell element and its generalization for smart structure modeling. Part Ⅰ. Solidshell dement formulation. [J]. Inter J Numer Methods Engrg, 2000, 48(4): 545-564.
  • 4Sze K Y, Yao L Q, Pian T H H. An eighteen-node hybrid stress solid-shell element for homogenous and laminated structures [J]. Finite Elements in Analysis and Design,2002, 38(7) : 353-374.
  • 5Sze K Y, Chan W K. A six-node pentagonal assumed natural strain solid-shell element [J]. Finite Elements in Analysis and Design, 2001, 37(8) : 639-655.
  • 6Alves de Sousa R J, Natal Jorge R M, Fontes Valente R A, et al. A new volumetric and shear locking-free 3D enhanced strain element [J]. Engineering Computations, 2003, 20(7-8): 896- 925.
  • 7Frontes Valente R A, Alves de Sousa R J, Natal Jorge R M. An enhanced strain 3D element for large deformation elastoplastic thin-shell applications [J]. Computational Mechanics, 2004, 34 (1) : 38-54.
  • 8Simo J C, Rifai M S. A class of mixed assumed strain methods and the methods of incompatible modes[J]. Int J Numer Methods Engrg,2000, 29(8):1595-1638.
  • 9Simo J C, Armero F, Taylor R L. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation [J]. Gomput Meth Appl Mech Engng, 1993, 110(3-4): 359-386.
  • 10Stolarski H, Belytschko T, Lee S K. A review of shell finite elements and co-rotational theories [J]. Int J Computational Mechanics Advances, 1994, 2 (2) : 125-212.

共引文献2

同被引文献33

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部