期刊文献+

基于核密度估计的遮挡人体跟踪 被引量:1

Tracking human under occlusion based on kernel density estimation
下载PDF
导出
摘要 充分利用空间、颜色、运动等信息对图像进行块建模、颜色建模和运动建模.通过混合高斯建模法,将运动人体的前景信息提取出来;基于Epanechnikov核密度梯度估计算法,对存储模型中的人体进行聚类,实现块建模;采用非参数的核密度估计算法和基于高斯分布的运动建模,分别获取颜色密度函数和运动密度函数,并利用颜色密度函数和运动密度函数对当前帧的前景区域进行后验概率估计,以获取后验概率图像,根据对该图像中遮挡人体进行分割以实现人体目标的跟踪.实验结果表明:基于核密度估计的遮挡人体目标跟踪算法有效地解决了遮挡人体目标跟踪问题. The blob model,color model and motion model were built by fully using the space information,the motion information and the color information.The moving foreground targets based on mixture Gaussian model were detected.The people body in stored model was clustered to acquire the blob model based on Epanechnikov kernel density estimation algorithm.Color density function using non-parametric kernel density estimation algorithm and motion density function using Gauss distribution were obtained.The posterior probability images were attained by estimating the foreground of the current frame using the color density function and the motion density function.Then the occluded people in the posterior probability images were segmented.Finally,the results after segmenting occluded people were the final tracking targets.Experimental results show that the proposed algorithm efficiently solves the problem of tracking people under occlusion
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第3期412-418,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金重大计划资助项目(90820306)
关键词 人体跟踪 人体遮挡 均值漂移 核密度估计 tracking people occluded people mean shift kernel density estimation
  • 相关文献

参考文献16

  • 1Anurag Mittal,Larry S. Davis.M2Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene[J]. International Journal of Computer Vision . 2003 (3)
  • 2KANG J,,COHEN I,MEDIONI G.Tracking people incrowded scenes across multiple cameras. Proceed-ings of Asian Conference on Computer Vision . 2004
  • 3KHAN S,,SHAH M.Tracking groups of people in pres-ence of occlusion. The 4th Pacific-Rim Symposiumon Image and Video Technology . 2000
  • 4DAVID W S,SAIN S R.Multi-dimensional density es-timation. . 2004
  • 5YANG C,DURAISWAMI R,GUMEROV N,et al.Improved fast gauss transform and efficient kernel den-sity estimation. Proceedings of IEEE InternationalConference on Computer Vision . 2003
  • 6K. Smith,D.G. Perez,J.M. Odobez.Using particles to track varying numbers of interacting people. Computer Vision and Pattern Recognition . June20–252005
  • 7Duong, T.,Hazelton, M.L.Cross-validation bandwidth matrices for multivariate kernel density estimation. Scandinav. J. Statist . 2005
  • 8Black J,Ellis T,Rosin P.Multi view image surveillance and tracking. Proceedings of the Workshop on Motion and Video Computing . 2002
  • 9OTSUKAK,,MUKAWAN.Multiviewocclusion analysis for tracking densely populated objects based on2-D visual angles. Proceed-ings of the2004IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 2004
  • 10Isard M,MacCormick J.Bramble: A Bayesian multiple-blob tracker. Proceedings of the 8th International Conference on Computer Vision . 2001

同被引文献21

  • 1David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision . 2004 (2)
  • 2Dorin Comaniciu,Peter Meer.Distribution Free Decomposition of Multivariate Data[J]. Pattern Analysis & Applications . 1999 (1)
  • 3Michael Isard,Andrew Blake.CONDENSATION—Conditional Density Propagation for Visual Tracking[J]. International Journal of Computer Vision . 1998 (1)
  • 4BAY H,TUYTELAARS T,GOOL L V.SURF:Speeded up robustfeatures. Computer Vision and Image Understanding . 2006
  • 5Lowe D.Object Recognition from Local Scale-Invariant Features. Proceedings of the International Conference on Computer Vision . 1999
  • 6Murray DW,Buxton BF.Scene segmentation from visual motion using global optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1987
  • 7Vishal Markandey,Anthony Reid,Sheng Wang.Motion estimation for moving target detection. IEEE Transactions on Aerospace and Electronic Systems . 1996
  • 8Stauffer C,Grimson E.Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000
  • 9Kalman R E.A new approach to linear filtering and prediction problem. Trans ASME J Basic Eng . 1960
  • 10Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear non-Gaussian Bayesian state estimation. IEE Proceedings . 1993

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部