期刊文献+

合金元素对β-Ti25Nb合金的结构稳定性与弹性性质的影响 被引量:3

Effects of alloy elements on structure stability and elastic properties of β-Ti25Nb alloys
原文传递
导出
摘要 采用密度泛函理论的缀加平面波加局域轨道的第一性原理和超晶胞方法对β结构的Ti75Nb25以及Ti68.75Nb25X6.25(X为Mo,Sn,Ta和Zr)合金的能量、电子结构以及弹性性质进行了理论计算。通过对比这几种合金的结构稳定性和弹性性质,发现Mo和Ta元素既能起到稳定β-Ti25Nb相作用,又能使其弹性常量增加。而Sn对β结构的稳定性影响较小,Zr却降低了β结构的稳定性,且两者对弹性常数的影响均较小。 The energy,electronic structure and elastic properties of β-phase Ti75Nb25 and Ti68.75Nb25X6.25(X=Mo,Sn,Ta,Zr)alloys were calculated using the method of supercell and based on density functional theory(DFT) augmented plane waves plus first-principles of local orbitals within generalized gradient approximation.Comparing the structure stability and general elastic properties between Ti68.75Nb25X6.25 alloys,the results show that Mo and Ta can stabilize the β phase and increase the elastic constants.Sn affects slightly on the structure stability of β phase while Zr decreases it and both of them have a little influence on the elastic constants of the β-phase Ti75Nb25.
出处 《金属热处理》 CAS CSCD 北大核心 2011年第4期16-20,共5页 Heat Treatment of Metals
基金 国家自然科学基金项目(10972190) 湖南省教育厅重点项目(09A089) 湖南省科技计划项目(2010FJ3132)
关键词 Ti-25Nb合金 结构稳定性 弹性性质 第一性原理 超晶胞 Ti-25Nb alloy structure stability elastic property first-principles supercell
  • 相关文献

参考文献21

  • 1姚强,孙坚,邢辉,郭文渊.Influence of Nb and Mo contents on phase stability and elastic property of β-type Ti-X alloys[J].中国有色金属学会会刊:英文版,2007,17(6):1417-1421. 被引量:2
  • 2Kim HY,kehara Y,Kim J I,et al.Size effects in micro-and nanoscaleindentation. Acta Materialia . 2006
  • 3Birch F J.Metabolic effects of lithium. Journal of Geophysical Research . 1978
  • 4Kim H Y,Ikehara Y,Kim J I,et al.Martensitic transformation,shapememory effect and superelasticity of Ti-Nb binary alloys. Acta Materialia . 2006
  • 5Sun J,Yao Q,Xing H,et al.Elastic properties ofβ,α″andωmetastable phases in Ti-Nb alloy from first-principles. Phys:Condens Matter . 2007
  • 6Zubov VI,Tretiakov NP,Teixeira Rabelo J N.Theoretical study of thesaturated vapor pressure and enthalpy of sublimation of C60sfullerite. Physics Letters A . 1997
  • 7Beckstein O,Klepeis J E,Hart G L W,et al.First-principles elasticconstants and electronic structure of alpha-Pt2Si and PtSi. Physical Review B Condensed Matter and Materials Physics . 2001
  • 8Hyland R W,Stiffler J R C.Determination of the elastic constants ofpolycrystalline Al3Sc. Scripta Metallurgica et Materialia . 1991
  • 9Hu Q M,Li S J,Hao Y L,et al.Phase stability and elastic moduliof Ti alloys containing Nb,Zr,and/or Sn from first-principlescalculations. Applied Physics . 2008
  • 10Fisher E S,Dever D.Elastic moduli and phase transition in uranium atT<43 K. Acta Materialia . 1968

二级参考文献15

  • 1COLLINGS E W. Physical metallurgy of titanium alloys [M]. Ohio: ASM, 1984.
  • 2BOYER R R, BRIGGS R D. The use of beta titanium alloys in the aerospace industry [J]. J Mater Eng Perform, 2005, 14(6): 681-685.
  • 3RACK H J, QAZI J I. Titanium alloys for biomedical applications [J]. Mater Sci Eng C, 2006, 26(8): 1269-1277.
  • 4KURODA D, NIINOMI M, MORINAGA M, KATO Y, YASHIRO T. Design and mechanical properties of new fl type titanium alloys for implant materials [J]. Mater Sci Eng A, 1998, 243: 244-249.
  • 5ABDEL-HADY M, HINOSHITA K, MORINAGA M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters [J]. Scripta Mater, 2006, 55: 477-480.
  • 6IKEHATA H, NAGASAKO N, FURUTA T, FUKUMOTO A, MIWA K, SAITO T. First-Principles calculations for development of low elastic modulus Ti alloys [J]. Phys Rev B, 2004, 70:174113.
  • 7SCHWARZ K, BLAHA P, MADSEN G K H. Electronic structure calculations of solids using the WIEN2k package for material sciences [J]. Comput Phys Commun, 2002, 147(1/2): 71-76.
  • 8MADSEN G K H, BLAHA P, SCHWARZ K, SJOSTEDT E, NORDSTROM L. Efficient linearization of the augmented plane-wave method [J]. Phys Rev B, 2001, 64(19): 195134.
  • 9PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996; 77: 3865-3868.
  • 10BLOCHL P E, JEPSEN O, ANDERSON O K. Improved tetrahedron method for Brillouin-zone integrations [J]. Phys Rev B, 1994, 49(23): 16223-16233.

共引文献1

同被引文献23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部