期刊文献+

基于不变矩算法的行人识别方法研究 被引量:4

Pedestrian Recognition based on Invariant Moments Algorithm
下载PDF
导出
摘要 行人识别对于智能辅助驾驶和智能车辆至关重要.采用一种基于不变矩算法的行人特征提取和识别方法,通过利用不变矩在目标平移、旋转和缩放的不变性,在HU不变矩基础上添加3个表达式,使不变矩包含更多的细节特征,将其作为行人目标的识别特征,利用支持向量机分类器作为主要手段对不变矩进行分类识别,并分析影响识别效果的影响因素.试验结果表明,选择改进的不变矩作为行人特征具有较好的行人识别效果,较高的识别率使行人和非行人能得到有效的识别. Pedestrian recognition is essential for intelligent assisted driving and intelligent vehicles.A method of pedestrian feature extraction and recognition based on invariant moments algorithm is proposed.The invariant moments have the accustomed invariance for translation,rotation and scaling of targets which can be used as the invariant characteristic vectors.It includes more details of features which are added to three expressions on the basis of HU invariant moments.The support vector machine classifier is used to test the recognization of pedestrians,and the effect of factors affecting recognition is analysed.The experimental results show that the invariant moments can be selected as the pedestrian characteristics and can give good effectiveness for pedestrian recognition.The high rate of pedestrian recognition demonstrates that the proposed method can recognize the pedestrians and non-pedestrians effectively.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2011年第2期33-36,共4页 Journal of Zhengzhou University(Engineering Science)
基金 河南省科技攻关计划项目(092102210155) 郑州市科技计划项目(10PTGG399-9)
关键词 不变矩 行人识别 智能辅助驾驶 智能车辆 支持向量机分类器 invariant moment pedestrian recognition intelligent assisted driving intelligent vehicle support vector machine classifier
  • 相关文献

参考文献3

二级参考文献33

  • 1卢涛,陈德钊.径向基网络的研究进展和评述[J].计算机工程与应用,2005,41(4):60-62. 被引量:27
  • 2张坤华,王敬儒,张启衡.基于边界不变特征的扩展目标识别方法[J].光电工程,2005,32(8):1-5. 被引量:3
  • 3王连亮,陈怀新.图像识别的RSTC不变矩[J].数据采集与处理,2006,21(2):225-229. 被引量:5
  • 4XIA Limin.Vehicle recognition using boosting neural network classifiers[C]//Proceedings of the Sixth World Congress on Intelligent Control and Automation.Dalian,China,2006:9641-9644.
  • 5GOYAL A,VERMA B.A neural network based approach for the vehicle classification[C]//Proceedings of Computational Intelligence in Image and Signal Processing.Honolulu,USA,2007:226-231.
  • 6SHIN P,JASSO H,TILAK S,et al.Automatic vehicle type classification using strain gauge sensors[C]//International Conference on Pervasive Computing and Communications Workshops.White Plains,USA,2007:425-428.
  • 7LIM T R,GUNTORO A T.Car recognition using Gabor filter feature extraction[C]//IEEE Asia-Pacific Conference on Circuits and Systems.Singapore,2002:451-455.
  • 8KI Y K,BAIK D K.Vehicle-classification algorithm for single-loop detectors using neural networks[J].IEEE Transactions on Vehicular Technology,2006,55(6):1704-1711.
  • 9LIN C T,YEH C M,CHUNG J F,et al.Support vector based fuzzy neural network for pattern classification[J].IEEE Transactions on Fuzzy Systems,2006,14(1):31-41.
  • 10HU M K.Visual pattern recognition by moment invariants[J].IEEE Transactions on Information Theory,1962,8(2):179-187.

共引文献62

同被引文献20

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部