摘要
设F表示域,n是大于等于4的整数。Kn(F)是由域上的所有n阶交错矩阵构成的集合。设fij(i,j=1,2,…,n)是F到F上的映射,f是Kn(F)到Kn(F)的映射,并且映射的形式被定义为f:[aij]|→[fij(aij)],[aij]∈Kn(F)则f称为fij(i,j=1,2,…,n)诱导的映射(即导出映射)。给出了域上交错矩阵空间保秩2导出映射的刻画。
Suppose F is an arbitrary field,n be an integer with n≥4.Denote by Kn(F) the set of all n×n alternate matrices over F.Let fij(i,j=1,2,…,n) be maps from F to itself.If a map f:Kn(F)→Kn(F) is defined by f:|→[fij(aij)] for any∈Kn(F),then we say that f is produced by fij.The general form of all maps f:Kn(F)→Kn(F) produced by fij preserving rank-2 alternate matrices and satisfies f(0)=0 is characterized.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2011年第2期189-193,共5页
Journal of Natural Science of Heilongjiang University
基金
Supported by the National Science Foundation of China(10671026)