摘要
针对一类时滞连续系统的模型参考自适应递推辨识算法, 运用微分中值定理,在参数不确定性的情况下进行了辨识算法的收敛性分析。通过对包括增益、时滞和实零极点在内的参数不确定性所进行的收敛性讨论, 提出了一种对模型误差进行低通滤波的改进算法,
The identification convergence analysis for the recursive identification algorithm of the model reference adaptive continuous time delay system with uncertain parameters is presented by using the Lagrangian Theorem. The convergence analysis with uncertain parameters including the gain, time delay, zero and poles is discussed. Then a low pass filtered algorithm for model errors is given to improve the convergence of the identification algorithm.
出处
《现代电力》
1999年第4期1-6,共6页
Modern Electric Power
基金
国家 "八六三"计划资助项目
关键词
模型参考
自适应辨识
收敛性
时滞连续系统
算法
time lag system
model reference adaptive identification
convergence analysis
uncertain parameter