期刊文献+

基于视觉冗余模型的码率压缩方法 被引量:1

Bit-Rate Compression Method Based on Visual Redundancy Model
下载PDF
导出
摘要 提出了一种基于视觉冗余模型的码率压缩方法,它是建立在人眼视觉特性视觉冗余模型的基础上,通过与编码标准参考软件相结合,进一步压缩编码比特数。实验结果表明,在图像质量没有明显变化的前提下,此方法在视频编码标准的基础上能进一步压缩编码比特数,平均压缩率在7%~30%左右。 In this paper, a novel method based on the visual redundancy model is proposed, which describes the bit-rate compression method of pixel areas. Furthermore, method is proposed, which combines with the software of video encoding standards, and it can further decrease bit numbers. The experimental results prove that the proposed method can obtain less bit numbers which average compression rates are between 7% and 30% compared with the software of video encoding standards and the quality of images is same as the original images.
出处 《电视技术》 北大核心 2011年第9期16-19,共4页 Video Engineering
基金 上海市重点学科建设基金资助项目(T0102) 上海科委重点项目(07dz15001)
关键词 人眼视觉系统 视觉冗余 恰可观测失真 HVS visual redundancy CSF
  • 相关文献

参考文献9

  • 1TONG H Y, VENETSANOPOULOS A N. A perceptual model for JPEG applications based on block classification, texture masking and luminance masking[EB/OL].[2010-09-13].http://arnetminer.org/viewpub.do?pid= 321743.
  • 2HONTSCH I S, KARAM L J.Locally adaptive perceptual image coding [J]. IEEE Trans. Image Processing,2000,9(9) : 1472-1483.
  • 3AHUMADA A J,PETERSON H A.Luminance-model-based DCT quantization for color image compression[EB/OL].[2010-09-13].http :// www.researchgate.net/publication/2338914_Luminance-Model- Based_DCT Quantization for Color_Image_Compression.
  • 4PETERSON H A, AHUMADA A J, WATSON A B. Improved detection model for D CT coefficient quantization[EB/OL].[2010-09-13], http :// adsabs.harvard.edu/abs/1993SPIE.1913..191P.
  • 5LU Z K, LIN W, YANG X, et al.Modeling visual attention' s modulatory aftereffects on visual sensitivity and quality evaluation[J]. IEEE Trans. Image Process, 2005,14( 11 ) : 1928-1942.
  • 6WEI Zhenyu, NGAN K N. Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain[J].IEEE Trans. Circuits and Systems for Video Technology, 2009,19 (3) :337-346.
  • 7LIN Weisi,LI Dong,XUE Ping. Discriminative analysis of pixel difference towards picture quality prediction[C]//Proc. IEEE International Conference on Image Processing.[S.1.] : IEEE Press, 2003,2:193-196.
  • 8唐良瑞,黄心渊.一种基于人眼视觉特性的图像压缩方法[J].电视技术,2000(12):5-7. 被引量:4
  • 9李书欣,王泉,吴延赞,刘梦楠.基于HVS感知模型与数据压缩的可逆图像水印算法[J].电视技术,2010,34(6):26-27. 被引量:4

二级参考文献10

  • 1[1]Chui Charles K. An Introduction to Wavelets. 1992.
  • 2[2]Antonini Marc, Barlaud Michel, Daubechies Ingrid. Image Coding Using wavelet Transform. IEEE Trans. On Image Proc., 1992,1:205~219.
  • 3[3]Shapiro Jerome M. Embedded Image Coding Using Zerotrees of Wavelet Coefficients. IEEE Trans. On Signal Proc., 1993,37:3445~3461.
  • 4[4]M Brislawn C. Preservation of Subband Symmetry in Multirate Signal Coding. IEEE Trans. On Signal Proc.,1995,43:3046~3056.
  • 5FENG J B ,LIN I C ,TSAI C S. Reversible watermarking: current status and key issues [J].International Journal of Network Security,2006,2(3):161-171.
  • 6GONZALEZ R C,WOODS R E,EDDINS S L.数字图像处理(Matlab版)[M].阮秋琦,译.北京:电子工业出版社,2008.
  • 7AWRANGJEB M, KANKANHALLI M S. Lossless watermarking considering the Human Visual System [EB/OL].[2009-11-20].http ://www.springerlink.com/content/5r5jgx37na2xvbuq/.
  • 8TIAN J. Reversible data embedding using a difference expansion[J]. IEEE Trans. Circuits Systems for Video Technology,2003,13 (8): 890-896.
  • 9VLEESCHOUWER C D,DELAIGLE J,MACQ B. Circular interpretation of bijective transformations in lossless watermarking for media asset management[J].IEEE Trans. Multimedia,2003,5( 1 ) :97-105.
  • 10NI Z C ,SHI Y Q ,ANSARI N,et al. Robust lossless image data hiding designed for semi-fragile image authentication[J].IEEE Trans. Circuits Systems for Video Technology, 2008,18 (4) : 497-509.

共引文献6

同被引文献13

  • 1Hu Yuchen, Chang Chinchen. A new loss less compression scheme based on Huffman an coding scheme for image compression. Signal processing hnage Communication, 2000; 16 : 367-372.
  • 2George E T, Mamahs A, Christos A. Improved bath fuzzy learning vector quantizatinn for image compression. Information Sciences, 2008; 178(20) : 3895-3907.
  • 3Shapiro J M. Embedded image coding using zero-tree of wavelets co- efficients. IEEE Trans Signal Process, 1993; 41 (12) : 3445-3462.
  • 4陈贤富.基于元胞自动机模型的新型图像压缩算法研究.合肥:中国科技技术大学,2010.
  • 5Barnsley M F, Sloan A D. A bettor way to compress images. Comput- er and Information Science, 1988 ; 13 ( 1 ) : 215-223.
  • 6顾晓东.基于视觉特性及人工神经网络的图像压缩.上海:复恩大学,2011.
  • 7曾峦,宋胜利.基于DSP的图像压缩编码器程序优化[J].计算机测量与控制,2010,18(3):671-673. 被引量:4
  • 8丛爽,蒲亚坤,王军南.DCT图像压缩方法的改进及其应用[J].计算机工程与应用,2010,46(18):160-163. 被引量:16
  • 9杨颖娴.基于PCA算法和小波包变换的人脸识别技术[J].微电子学与计算机,2011,28(1):92-94. 被引量:21
  • 10蔡碧野,向军.基于BEMD和PCA的数字图像压缩[J].计算机工程与应用,2011,47(23):185-187. 被引量:6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部