期刊文献+

基于压缩采样理论的改进型视频编解码器

Advanced Fast Encoding of Video Based on Compressive Sensing
下载PDF
导出
摘要 压缩采样或压缩传感是数据采样并同时压缩的新理论、新方法,是现在理论研究的热点。通过对CS视频编码的研究,提出了一种基于CS理论的改进型视频编码方法,所提的改进型方法结合使用SRM和GPSR算法,比原算法更加注重利用视频本身的特性和更为合理的观测数分配方法。 Compressive sampling or compressed sensing is a new technique for simultaneous data sampling and compression and also the current focus of theoretical research. In this paper, an advanced video encoding algorithm based compressive sensing theory is proposed. The video encoding framework combines the SRM and GPSR algorithm. Compared with the previous algorithm, proposed algorithm can pay more attention to the use of characteristics of the video sequence itself and more reasonable method of measurements distribution.
出处 《电视技术》 北大核心 2011年第9期27-29,共3页 Video Engineering
关键词 压缩采样 视频编解码器 GPSR SRM compressive sampling video codec GPSR SRM
  • 相关文献

参考文献11

  • 1DONOHO D.Compressed sensing[J].IEEE Trans. Information Theory, 2006,52(4) : 1289 -1306.
  • 2喻玲娟,谢晓春.压缩感知理论简介[J].电视技术,2008,32(12):16-18. 被引量:39
  • 3CANDES E, ROMBERG J, TAO T. Robust uncertainty principles.' exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans.lnformation Theory,2006,52(2) : 489- 509.
  • 4BARANIUK R G. Compressive sensing (lecture notes)[J]. IEEE Trans. Signal Processing Magazine,2007,24(7) : 118-121.
  • 5DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Trans. Signal Processing Magazine, 2008,25 (2) : 83-91.
  • 6STANKOVIC V, STANKOVIC L, CHENG S. Compressive video sampling [EB/OL].[2010-08-09]. http://www.eurasip.org/Proceedings/Eusipco/ Eusipco2008/papers/15 69099804.pdf.
  • 7MARCIA R F,WILLETT R M. Compressive coded aperture video reconstruction[EB/OL].[2010-08-09], http://people.ee.duke.edu/-willett/ papers/MarciaEUSIPCO2008.pdf.
  • 8PARK J Y,WAKIN M B.A multiscale framework for compressive sensing of video[EB/OL].[2010-08-09].http ://inside.mines.edu/mwakin/ papers/jyp-mbw-videocs-pcs2009.pdf.
  • 9谢晓春,赖昭胜,杨汉祥.基于压缩感知理论的视频编解码器[J].电视技术,2010,34(5):14-17. 被引量:4
  • 10DO T T,GAN L,NGUYEN N,et al.Fast and efficient compressive sensing using structurally random matrices[EB/OL].[2010-08-09]. http://thanglong.ece.jhu.edu/namnguyen/SRM_joumal.pdf.

二级参考文献21

  • 1DONOHO D. Compressed sensing[J]. IEEE Trans. Information Theory, 2006, 52(4): 1289-1306.
  • 2CANDES E. Compressive sampling[C]/[Proceedings of the International Congress of Mathematicians. Madrid, Spain: [s.n.], 2006:1433- 1452.
  • 3CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Information Theory, 2006, 52(4): 489-509.
  • 4TROPP J, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. Information Theory, 2007, 53(12): 4655-4666.
  • 5ZOU J, GILBERT A C, STRAUSS M J, et al. Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis[J]. Journal of Computational Physics, 2006, 211(2): 572 -595.
  • 6GAN Lu. Block compressed sensing of natural images[C]//Proceedings of the International Conference on Digital Signal Processing. [S.l.]: IEEE Press, 2007:403-406.
  • 7DONOHO D, TSAIG Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
  • 8FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE J-STSP,2007,1(4): 586-598.
  • 9TROP J A. Greed is good: algorithmic results for sparse approximation[J]. IEEE Trans. Information Theory, 2004, 50(10):2231-2242.
  • 10FORNASIER M, RAUHUT H. Iterative thresholding algorithms[J]. Applied and Computational Harmonic Analysis, 200B, 25(2):187-208.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部