期刊文献+

基于边缘相似性的异源图像匹配 被引量:4

Matching Multi-Sensor Images Based on Edge Similarity
下载PDF
导出
摘要 异源图像匹配是视觉导航、多源图像融合分析的关键步骤之一。对于成像机理差别较大的异源图像,如SAR图像和可见光图像,采用传统的异源图像匹配算法难以得到满意结果。本文提出一种基于边缘相似性的异源图像匹配方法,首先分别提取待匹配图像的边缘特征点集;然后计算基准图的边缘距离场;最后基于边缘相似性模型,通过实时图边缘图和基准图边缘距离场计算边缘相似度,寻找相似度最大的变换参数即为最终匹配参数。采用SAR与可见光图对方法进行了测试,结果表明,这种方法能够快速可靠地实现异源图像匹配。 Matching multi-sensor images is a key step in vision navigation and multi-sensor image fusion.However,the imaging mechanisms of SAR images and optical images are very different and it is difficult to match them using a conventional multi-sensor image matching algorithm.A new matching method based on edge similarity is proposed in this paper.With the method,edge maps are detected in reference image and real-time image separately.Then,the edge distance field of the reference image is calculated.Similarity measure is computed through real-time edge map and reference edge distance field based on edge similarity model.The max edge similarity corresponds to the matching result.SAR images and optical images are used to test this method.Experiment results show that the method matches multi-sensor images efficiently and reliably.
作者 李壮 朱宪伟
出处 《飞行器测控学报》 2011年第2期37-41,共5页 Journal of Spacecraft TT&C Technology
基金 863项目支持(2007AA12Z121)
关键词 图像处理 图像匹配 边缘相似性 异源图像 Image Processing Image Matching Edge Similarity Multi-sensor Images
  • 相关文献

参考文献12

  • 1Fitch A J, Kadyrov A, Chrismas W J, et al. Orientation Cor relation[C]//Electronic Proceedings of The 13th British Ma chine Vision Conference. Cardiff, UK: British Machine Vision Association, 2002.
  • 2Kovesi P D. Image Features from Phase Congruency [J]. Journal of Computer Vision Research, 1999, 1(3):2 -26.
  • 3Maes F, Collignon A, Vandermeulen D, et al. Multimodality Image Registration by Maximization of Mutual Information [J].IEEE Trans. on Medical Imaging, 1997, 16(2): 187-198.
  • 4Lampert C H, Blaschko M B, Hofmann T. Beyond Sliding Windows: Object Localization by Efficient Subwindow Search [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Alaska, US: IEEE Computer Society Press,2008.
  • 5Dare P, Dowman I. An Improved Model for Automatic Fea- ture-based Registration of SAR and SPOT Images [J].Journal ofPhotogrammetry & Remote Sensing. 2001, 56(1): 13-28.
  • 6Li H, Manjunath B S, Mitra S K. A Contour based Approach to Multisensor Image Registration [J].EEE Trans. on Image Processing, 1995, 4(3) : 320 - 334.
  • 7于秋则,程辉,田金文,柳健.基于边缘特征的SAR图像与光学图像的匹配[J].雷达科学与技术,2003,1(4):242-245. 被引量:6
  • 8苏娟,林行刚,刘代志.一种基于结构特征边缘的多传感器图像配准方法[J].自动化学报,2009,35(3):251-257. 被引量:33
  • 9Comaniciu D, Meer P. Mean Shift: A Robust Approach To-ward Feature Space Analysis[J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(3): 603 - 619.
  • 10Kovesi P. Phase Congruency= A Low level Image Invariant [C]//Proc. 7th Digital Image Computing: Techniques and Applications, Sydney, 2003: 309-318.

二级参考文献24

  • 1Li H, Manjunath B S, Mitra S K. A contour-based approach to multisensor image registration. IEEE Transactions on Image Processing, 1995, 4(3): 320-334.
  • 2Dare P, Dowman I. An improved model for automatic feature-based registration of SAR and SPOT images. ISPRS Journal of Photogrammetry and Remote Sensing. 2001, 56(1): 13-28.
  • 3Hong T D, Schowengerdt R A. Automated precise registration of radar and optical satellite images. In: Proceedings of SPIE Conference on Applications of Digital Image Processing. San Diego, USA: IEEE, 2003. 88-96.
  • 4Shekhar C, Govindu V, Chellappa R. Multisensor image registration by feature consensus. Pattern Recognition, 1999, 32(1): 39--52.
  • 5Middelmann W, Pepelka V, Thoennessen U. Registration of multiaspect InSAR images. In: Proceedings of SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery. Orlando, USA: SPIE, 2003, 98-109.
  • 6Yao J C, Kian L G. A refined algorithm for multisensor image registration based on pixel migration. IEEE Transactions on Image Processing, 2006, 15(7): 1839-1847.
  • 7Keller Y, Averbuch A. Multisensor image registration via implicit similarity. IEEE Transactions on Pattern Analysis and Mt~chine Intelligence, 2006, 28(5): 794-801.
  • 8Kruger W. Robust and efficient map-to-image registration with line segments. Machine Vision and Applications, 2001, 13(1): 38-50.
  • 9He X C, Yung N H C. Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004. 791-794.
  • 10Bentoutou Y, Taleb N, Kpalma K, Ronsin J. An automatic image registration for applications in remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2127-2137.

共引文献53

同被引文献44

  • 1洪贝,孙继银.图像配准技术研究[J].战术导弹控制技术,2006(3):109-112. 被引量:8
  • 2高峰,文贡坚,吕金建.基于干线对的红外与可见光最优图像配准算法[J].计算机学报,2007,30(6):1014-1021. 被引量:26
  • 3葛森,黄大贵.基于最大互信息方法的机械零件图像识别[J].电子科技大学学报,2007,36(4):801-804. 被引量:1
  • 4Krotosky S J ,Trivedi M M. Person surveillance using visu-al and infrared imagery [ J]. IEEE Transactions on Cir-cuits and Systems for Video Technology, 2008 , 18(8):1096 -1105.
  • 5Ribaric S, Marcetic D, Vedrina D S. A knowledge-basedsystem for the non-destructive diagnostics of facade isola-tion using the information fusion of visual and IR images[J] . Expert Systems with Applications,2009, 36 ( 2 ):3812 -3821.
  • 6Lowe David G. Object recognition from local scale-invari-ant features[C]. The Second Proceedings of the Interna-tional Conference on Computer Vision, 1999:1150-1157.
  • 7Lowe D G. Distinctive image features from scale-invariantkeypoints[ J]. International Journal of Computer Vision,2004,60(2) :91 -110.
  • 8Mikolajczyk,Schmid C. A performance evaluation of localdescriptors [ J]. IEEE Transactions on Pattern Analysisand Machine Intelligence ,2005,27 (10 ) :1615 -1630.
  • 9S Belongie,J Malik,J Puzicha. Shape matching and objectrecognition using Shape contexts[ J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 24 ( 24):509-521.
  • 10RAMANATHAN M. Matching of shapes bound by freeform curves [ J ]. Computer-Aided Design and Applications ,2012,2 ( 9 ) : 133- 146.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部