期刊文献+

紫外光聚合法制备PVA-SbQ/透明质酸凝胶及其性能研究 被引量:3

Study on preparation and properties of PVA-SbQ/hyaluronic acid hydrogel via UV light polymerization
下载PDF
导出
摘要 将透明质酸(HA)溶液和聚乙烯醇-苯乙烯基吡啶盐缩合物(PVA-SbQ)溶液混合后,通过紫外光聚合法制备光交联PVA-SbQ/透明质酸凝胶。用FT-IR和SEM对凝胶的结构进行了表征,红外结果表明,PVA-SbQ/透明质酸凝胶在紫外光照下发生交联反应,SEM结果表明,凝胶有多孔结构,并且随着PVA-SbQ含量的增加,孔径逐渐减小。研究了不同光照时间下凝胶的粘度、溶胀曲线,表明m(HA)∶m(PVA-SbQ)=1∶3的溶液在光照时间为450s时开始由稀凝胶转变为固态凝胶,凝胶的表观粘度和溶胀率达到最大。不同光照时间下载药凝胶的释药行为,表明凝胶可以通过控制光照时间实现对药物的控制释放。 Polyvinylacohol (PVA) bearing styrylpyridinium group (PVA-SbQ) is a new photosensitive polymer, styrylpyridinium group on side of PVA main chain can be cross-linked under UV radiation to form network. The (PVA-SbQ)/hyaluronic acid gel were made by mixing the solutions of PVA-SbQ and hyaluronic acid followed by UV light polymerization. Its structure was examined by means of FT-IR and SEM. FT-IR results show that the (PVA-ShQ)/hyaluronic acid gel was photo cross-linked under UV light, SEM results show that it has the porous structure and with the increase of the content of PVA-SbQ, aperture gradually decrease. The apparent viscosity of the (PVA-SbQ)/hyaluronic acid solution (re(HA) : m(PVA-SbQ) = 1: 3) under different UV irradiation time and swelling curves of the gel were studied. The results show that the (PVA-SbQ)/hy aluronic acid solution began to conversion from dilute gel state to solid gel state at the irradiation time of 450s. The ratio of the drug release could be controlled by the irradiation time and pH value.
出处 《功能材料》 EI CAS CSCD 北大核心 2011年第B04期346-349,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(20704017) 江南大学食品科学与技术国家重点实验室目标导向资助项目(SKLF-MB-200805)
关键词 PVA-SbQ 透明质酸 光交联 凝胶 PVA-SbQ hyaluronic acid photocross-link gel
  • 相关文献

参考文献13

  • 1吴明霞,邓静,吴华昌,陈艺德.透明质酸制备的研究进展[J].生物技术通报,2008,24(2):68-72. 被引量:11
  • 2Xinqiao Jia, Yoon Yeo, Rodney J, et al. [J]. Biomacromolecules, 2006, (7) : 3336-3344.
  • 3Bhattacharyya S, Guillot S, Dabboue H. [J]. Biomacromolecules, 2008,(9): 505-509.
  • 4Ladam G, Vonna L, Sackmann E. [J]. J Phys Chem B, 2003,(107): 8965-8971.
  • 5Jha A K, Hule R A, Jiao T, et al. [J]. Macromolecules, 2009, 42(2):537-546.
  • 6Dmitri A, Ossipov, Piskounova S, et al. [J]. Macromolecules, 2008, 41:3971-3982.
  • 7Xinqiao Jia, Burdick J A, Kobler J, et al. [J]. Macromolecules, 2004, 37:3239-3248.
  • 8Ichimwa K. [J]. Polym Chem Ed, 1982(20) :1411-1419.
  • 9Uhlichay T, Tomaschewski G, Komber H. [J]. Reactive & Functional Polymers, 1995, (28):55-60.
  • 10Shibuya T, Toehizawa N, Miyazaki M, et al. [J]. Journal of Photopolymer Science and Technology, 1995, (8) :29-35.

二级参考文献57

共引文献19

同被引文献26

  • 1Habibi Y, Lucia A, Rojas O. Cellulose nanocrystals: chemistry, self- assembly, and application[J]. Chem. Rev., 2010, 110: 3479- 3500.
  • 2Pitcher N, Veigel S, Aigner N, et al. Reinforcement of bacterial cellulose aerogels with bioeompatible polymers [ J ]. Carbohydr. Polym. , 2014, 111: 505-513.
  • 3Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose-a masterpiece of nature's arts[J]. J. Mater. Sci., 2000, 35: 261- 270.
  • 4Montrikittiphant T, Thanit T, Min L, et al. Bacterial cellulose nanopaper as reinforcement for polylaetide composites: renewable thermoplastic nanoPaPreg[ J ]. Maeromol. Rapid Commun. , 2014, 35: 1640-1645.
  • 5Juntaro J, Ummartyotin S, Sain M, et al. Bacterial cellulose reinforced polyurethane-based resin nano-eomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties[J]. Carbohydr. Polym., 2012, 87: 2464- 2469.
  • 6S.ai H,Xing L,Xiang J, et al. Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non- supereritieal drying process[J]. J. Mater. Chem. A, 2013, 1: 7963-7970.
  • 7Mohamad N, Amin M C I M, Pandey M, et al. Bacterial cellulose/ acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model[ J ]. Carbohydr. Polym., 2014, 114: 312-320.
  • 8Olsson R T, Samir M A, Salazar A, et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J]. Nature Nanoteehnol. , 2010, 5: 584-588.
  • 9Uhliehay T, Tomasehewski G, Komber H. Synthesis of a hydrophobised and photocrosslinkable prepolymer based on poly (vinyl alcohol)[J]. React. Funet. Polym. , 1995, 28: 55-60.
  • 10Park W I, Kim H S, Kwon S M, et al. Synthesis of bacterial celluloses in multiwalled carbon nanotube-dispersed medium [ J ].Carbohydr. Polym. , 2009, 77: 457-463.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部