摘要
构造了五维热传导方程的一族两层显格式,证明了当截断误差阶为O(τ+h2)时,其稳定性条件为网比r=hτ2≤21,优于同类的其它显格式,当截断误差阶为O(τ2+h2)时,可以得到一个简洁而实用的二阶精度的两层显格式.
A class of two-level explicit difference schemes for solving 5-D heat equation are presented,when the order of trunction error is O(τ + h2),the stability condition is the mash ratio r = hτ2 ≤ 21,which is better than that of all other explicit difference shcemes.When the order of trunction error is O(τ2 + h2),it becomes a concise and practical explicit schemes of two level with two-order accuracy.
出处
《纯粹数学与应用数学》
CSCD
2011年第2期170-175,共6页
Pure and Applied Mathematics
基金
河南省教育厅自然科学基础研究基金(20031100010)
关键词
热传导方程
显式差分格式
截断误差
条件稳定
heat-conduction equation
explicit difference scheme
truncation error
conditionally stable