期刊文献+

光滑粒子流体动力学-有限元法接触算法研究 被引量:3

Research on Contact Algorithm between Smoothed Particle Hydrodynamics and Finite Element Method
原文传递
导出
摘要 耦合光滑粒子流体动力学(SPH)方法和有限元法(FEM),是研究冲击动力学问题的一种有效途径。为解决SPH粒子和有限单元间的接触问题,提出了SPH-FEM接触算法。该算法是在有限元节点处设置背景粒子,采用SPH接触算法的思想,计算施加在SPH粒子和有限元节点上的接触力,并且以外力的形式分别加入到SPH动量方程和有限元动力学方程中。利用SPH-FEM接触算法,对两杆撞击以及圆柱形钢弹正冲击钢板发生的冲塞破坏过程进行了三维数值模拟,靶板采用含损伤的Johnson-Cook模型和Grüneisen状态方程,模拟结果与实验结果吻合较好。 The coupling between smoothed particle hydrodynamics(SPH) and finite element method(FEM) is an effective approach for the simulation of impact dynamics.An alternative algorithm for the treatment of contact problem between SPH particles and finite elements was employed.Background particles were assigned in the position of finite element nodes,and the contact forces on SPH particles and finite element nodes were calculated with the same approach as SPH particles to particle contact algorithm.The contact force was added to the momentum equation for SPH and dynamic equation for FEM respectively.Using the SPH-FEM contact algorithm,the axial impact between two bars and the perforation of a cylindrical steel projectile impacting a plate target were simulated,where the Johnson-Cook material model with damage effect and Grüneisen equation of state were employed.The computed results showed good agreement with the experimental data.
出处 《高压物理学报》 EI CAS CSCD 北大核心 2011年第2期97-103,共7页 Chinese Journal of High Pressure Physics
基金 国家重点基础研究发展计划(973计划)(61338) 教育部新世纪优秀人才支持计划 第二炮兵工程学院创新性探索研究项目(KX2008172)
关键词 光滑粒子流体动力学方法 有限元法 接触 背景粒子 冲击 smoothed particle hydrodynamics finite element method contact background particle impact
  • 相关文献

参考文献2

二级参考文献23

  • 1Johnson G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations[J]. Nuclear Engineering and Design, 1994,50:265-274.
  • 2Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constants[J]. Journal of Applied Physics, 1988,64(8) :3901-3910.
  • 3Chen J K, Beraun J E, Jih C J. An improvement for tensile instability in smoothed particle hydrodynamics[J]. Computational Mechanics, 1999,23:279-287.
  • 4Gust W H. High impact deformation of metal cylinders at elevated temperatures[J]. Journal of Applied Physics, 1982,53(5):3566-3575.
  • 5Libersky L D, Petschek A G. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993,109 : 67-75.
  • 6Lucy L B. A numerical approach to the testing of the fission hypothes[J]. The Astronomical Journal, 1977, 82(12):1013 - 1024.
  • 7Gingold R A, Monaghan J J. Smoothed particie hydrodynamics: Theory and application to non-spherical stars[ J]. Mon Not Rastr Soc, 1977,181 : 375 - 389.
  • 8Gingold R A, Monaghan J J. Kernal estimates as a basis for general particle methods in hydrodynamics[J]. Comput Phys, 1982, 46: 429 - 453.
  • 9Evrard A E. Beyond N-body: 3D cosmological gas dynamics[J]. Mon Not Rastr Soc, 1988, 235:911 -934.
  • 10Hemquist L. Some cautionary remarks about smoothed particle hydrodynamics[J]. The Astronomical Journal, 1993, 404:717- 722.

共引文献49

同被引文献37

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部