期刊文献+

基于ICA算法的智能电子鼻在混合气体特征提取中的应用 被引量:3

Based on Independent Component Analysis Algorithm of Intelligent Electronic Nose in the Mixed Gas of Feature Extraction
下载PDF
导出
摘要 电子鼻传感器在对环境污染的混合气体浓度监测及对工业废气检测中具有重要的作用,但由于现有算法的辨识能力和抗干扰能力差,影响提取原始信息信号的准确度;独立分量分析(ICA)方法是一种高效盲信号分离方法;它将独立的源信号从混合信号中分离出来;文中经过电子鼻传感器检测出混合气体信号,通过ICA算法对混合气体进行分解,对外界干扰噪声进行消除,从而使气体成分辨别达到很好的效果;最后经过MATLAB仿真验证,对辨识出来的原始气体成分具有高精度,强抗干扰能力。 Electronic nose sensors in the gas mixture concentration of environmental pollution monitoring and detection of industrial waste gas has an important role,but because of the recognition capacity of existing algorithms and anti-jamming ability is poor,affecting recognition accuracy.Independent Component Analysis is a highly efficient method of blind signal separation.It an independent source signal from the mixed-signal separation.This paper through the electronic nose sensors to detect gas mixture signal,through the ICA decomposition algorithm of mixed gases on the outside interference to eliminate the noise,so that gas composition identified to achieve good results.Thanks to MATLAB simulation on the identification of the original gas composition come out with high precision.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第4期984-986,共3页 Computer Measurement &Control
关键词 电子鼻传感器 独立分量算法 混合气体特征提取 Electronic nose sensors independent component algorithm feature extraction gas mixture
  • 相关文献

参考文献2

二级参考文献24

  • 1FENG Dazheng, BAO Zheng and ZHANG Xianda(Key Laboratory for Radar Signal Processing, Xidian University, Xi’an 710071, China).Multistage decomposition algorithm for blind source separation[J].Progress in Natural Science:Materials International,2002,12(5):60-64. 被引量:5
  • 2[1]Bell AJ, Sejnowski TJ. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995,7(6):1129-1159.
  • 3[2]Lee TW. Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources[J]. Neural Computation, 1999,11(2):409-433.
  • 4[3]Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. Neural Networks, 1999,10(3):626-634.
  • 5[4]Comon P. Independent component analysis, A new concept[J]? Signal processing, 1994,36:287-314.
  • 6[5]Lee TW. Blind source separation of more sources than mixtures using overcomplete representations[J]. IEEE Signal Processing letters, 1999,6(4):87-90.
  • 7[6]Jung TP, Makeig S, Westerfield M, et al. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects[J]. Clin Neurophysiol, 2000,111(10):1745-1758.
  • 8[7]Makeig S, Jung TP, Ghahremani D, et al. Blind separation of event-related brain responses into independent components[J]. Proc Natl Acad Sci. USA, 1997,94:10979-10984.
  • 9[8]Amari SI, Cichocki A, Yang HH. A new learning algorithm for blind signal separation[C]. Advances in Neural Information Processing Systems. MIT press, 1996,8:757-763.
  • 10[9]Delfosse N, Loubaton P. Adaptive blind separation of independent sources: a deflation approach[J]. Signal Processing, 1995,45(1):59-83.

共引文献7

同被引文献27

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部