期刊文献+

变参数非自治蔡氏电路的混沌同步 被引量:8

Chaotic synchronization of non-autonomous Chua's circuits with variable parameters
下载PDF
导出
摘要 针对非自治蔡氏电路激励电压的振幅和初相位发生微小扰动的混沌同步问题,提出了一种新的同步方法:将非自治方程等效变换为自治方程,使发生微小扰动的激励电压的振幅和初相位能用自治方程不同的初始值来体现,经过这种变换,参数失配的混沌同步问题能用定参数混沌同步方法来解决,再利用单向耦合同步法,结合非线性微分几何控制理论中的串接系统稳定性方法对误差系统进行降维处理,得出了同步系统耦合系数满足的条件,解决了两系统参数失配的混沌同步问题.仿真和实验结果表明:该方法可以使两个混沌系统在参数失配时达到快速全局同步. A new synchronization method is proposed for the non-autonomous Chua's circuits with small disturbances in voltage amplitude and phase. In this method, the non-autonomous equation is transformed into the autonomous equation with initial values representing the small perturbed voltage amplitude and phase in the original non-autonomous equation. Thus, the chaotic synchronization with mismatch parameters can be realized by the chaotic synchronization with determin- istic parameters. Using one-way coupled synchronization method and the nonlinear differential geometric control theory about stability theory of cascade-connected system to reduce the dimension, we obtain the conditions for coupling coeffi- cients in the synchronization of two systems, thus solving the problem of synchronization of two systems with mismatch parameters. The simulation results show that this method can realize fast chaotic synchronization between two systems with mismatch parameters.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第3期389-394,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(50775071) 湖南省科技计划资助项目(2008FJ3037) 湖南省教育厅重点资助项目(06A018)
关键词 变参数 非自治 蔡氏电路 同步 variable parameter non-autonomous Chua's circuit synchronization
  • 相关文献

参考文献8

  • 1PECORA L M,CARROLL T L.Synchronization in chaotic systems[J].Physical Review Letters,1990,64(6):821-824.
  • 2JU H P.Synchronization of Genesio chaotic system via backstepping approach[J].Chaos,Solitons and Fractals,2006,27(5):1369-1375.
  • 3YAA J P,LI C P.On chaos synchronization of fractional differential equations[J].Chaos,Solitons and Fractals,2007,32(2):725-735.
  • 4YASSEN M T.Adaptive chaos control and synchronization for uncertain new chaotic dynamical system[J].Physics Letters A,2006,350(1/2):36-43.
  • 5张皓,严怀成,陈启军.随机混沌时滞神经网络的指数同步[J].控制理论与应用,2009,26(2):189-192. 被引量:1
  • 6BOWONG S,TEWA J J.Practical adaptive synchronization of a class of uncertain chaotic systems[J].Nonlinear Dynamics,2009,56(1):57-68.
  • 7CISZAK M,MONTINA A,ARECCHI F T.Spike synchronization of chaotic oscillators as a phase transition[j].Cognitive Processing,2009,10(1):33-39.
  • 8BAPTISTA M S,SILVA T P.Phase synchronization in the perturbed Chua circuit[J].Physical Review E,2003,67(3):6212.

二级参考文献7

  • 1赵碧蓉,江明辉,沈轶.随机时滞神经网络的全局指数稳定性[J].控制理论与应用,2005,22(5):799-801. 被引量:9
  • 2LIAO X X, WANG J. Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays[J]. IEEE Transactions on Circuits and Systems, 2003, 50(2): 268 - 275.
  • 3CAO J, WANG J. Global asymptotic and robust stability of recurrent neural networks with time delays[J]. IEEE Transactions on Circuits and Systems I, 2005, 52(2): 417 - 426.
  • 4PECORA L M, THOMAS L C. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821 - 824.
  • 5SUN Y H, CAO J D, WANG Z D. Exponential synchronization of stochastic perturbed chaotic delayed neural networks[J]. Neurocomputing, 2007, 70(13): 2477 - 2485.
  • 6CHEN W H, GUAN Z H, LU X M. Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: an LMI approach[J]. Systems & Control Letters, 2005, 54(13): 547 - 555.
  • 7冯昭枢,王建.随机Hopfield神经网络的稳定性分析[J].控制理论与应用,1999,16(3):345-348. 被引量:1

同被引文献76

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部