期刊文献+

不同地形条件下架空配电线路的防雷分析 被引量:54

Comprehensive Analysis of Lightning Performance of Overhead Power Distribution Line with Varied Ground Obliquity
下载PDF
导出
摘要 雷电活动直接影响到架空电力线路的安全稳定运行,为全面分析架空配电线路的雷害问题,提出了一种计入地形条件影响的分析新方法。先基于雷电的击距理论建立架空配电线路的引雷模型,结合雷电流的概率密度函数,求出了线路在不同高度和不同地形条件下的引雷范围与线路高度呈非线性关系;在确定线路引雷范围的基础上,分别计算了我国不同地域的架空线路直接雷击跳闸率;在对Rusck感应雷过电压研究成果分析的基础上,利用广义积分法得出了不同地形和地域的感应雷击跳闸率计算公式,而且架空配电线路中感应雷击跳闸次数占总雷击跳闸次数能达到83%,在架空线路的防雷分析中应该计入感应雷击的影响。2条10 kV架空线路算例与实际运行情况的对比验证了该计算方法的正确性。 In order to take lightning problem into consideration comprehensively, we introduced a new model for calculating the lightning outage rate of overhead power distribution line due to direct and indirect lightning strokes. By establishing an improved EGM model of overhead distribution line based on striking distance theory, combining with probability density function of lightning current, we solved the attract range of overhead line, which possesses a nonlinear relationship with line height for different district. Taking the Rusck's formula into consideration, basing on Generalized Integral method, we put forward a new arithmetic for calculating the lightning outage rate which includes indirect lightning. By calculation of two real 10 kV power distribution line, the new method is practical and accurate. The results show that indirect strokes are the main cause of lightning trip out, and for analyzing the lightning performance of overhead power distribution lines, the indirect lightning must be taken into consideration.
出处 《高电压技术》 EI CAS CSCD 北大核心 2011年第4期848-853,共6页 High Voltage Engineering
基金 国家自然科学基金(51007023)~~
关键词 架空配电线路 雷击跳闸率 电气几何模型 雷击距 引雷范围 感应雷击 overhead distribution line lightning outage rate electro-geometric model (EGM) striking distance at tract range indirect lightning
  • 相关文献

参考文献4

二级参考文献35

  • 1张志劲,司马文霞,蒋兴良,舒立春,胡建林.高杆塔下击距系数的研究[J].高电压技术,2005,31(4):16-18. 被引量:19
  • 2中国电力工程顾问集团公司.交流特高压试验示范工程,6卷,第七册:防雷保护研究,2006.
  • 3Golde R H. The lightning conductor[J]. Journal of The Franklin Institute, 1967, 283(6): 451-463.
  • 4Young F S, Clayton J M, Hileman A R. Shielding of transmission lines[J]. IEEE Transactions on Power Apparatus and Systems, 1963, S82: 132-154.
  • 5Brown G W, Whitehead E R. Field and analytical studies of transmission lines(Part II )[J]. IEEE Transactions on Power Apparatus and Systems, 1969, 88(5): 617-626.
  • 6Brown G W, Whitehead E R. Field and analytical studies of transmission lines[J]. IEEE Trans. on Power Apparatus and Systems, 1968, 87(1): 270-281.
  • 7Sargent M. The frequency distribution of current magnitudes of lightning strokes to tall structures[J]. IEEE Transactions on Power Apparatus and Systems, 1972, 91(5): 2224-2229.
  • 8Eriksson A J. An improved electrogeometric model for transmission line shielding analysis[J]. IEEE Transactions on Power Delivery, 1987, 2(3): 871-886.
  • 9IEEE Std 1243-1997, IEEE guide for improving the lightning performance of transmission lines[S].
  • 10Holt R, Nguyen T T. Determination of optimal shielding angles in shielded transmission line design[C]. Proceeding of IEEE Power Engineering Society Winter Meeting (Singapore), 2000, 4: 2892- 2897.

共引文献285

同被引文献415

引证文献54

二级引证文献442

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部