期刊文献+

基于MONTE-CARLO模型的细胞传感器纳米颗粒表面处理分析 被引量:2

Analysis of Surface Treatment with Nanoparticals on Extracellular Array Based on Monte-Carlo Model
下载PDF
导出
摘要 离体生物传感器的微型和集成化为细胞电生理研究提供了有力手段。当前微电极阵列表面纳米粒子处理的相关量化分析尚为欠缺。着重采用Monte-Carlo模型判断单层/多层纳米粒子膜与电极耦合的有效性,讨论异质的单一或不同粒径分散度(50~500 nm)的纳米粒子分层贴附处理于电极上,从二维、三维模型角度分析纳米粒子表面处理的有效性。多种结果显示,粒径分散度较大,且在一个数量级内的纳米颗粒能有效增大电极贴附率与处理均一性,以提高后期细胞-电极结合的重复性。相关金微阵列电极电镀的交流阻抗实验也说明纳米颗粒的沉积对于降低电极体阻抗及增大表面活化处理的作用。表面处理技术的量化评估,有利于建立基于高通量平台的实验和计算生物学、信息处理技术有机结合的研究方法。 Microelectrode arrays in-vitro provide methods down to cellular level by micromation and integration.By now quantified evaluating analysis for electrode surface treatment is lacked and should be applied.In this respect,electrical properties of microarrays were analyzed by Monte-Carlo statistical model to demonstrate the surface immobilized effects.Different 2D and 3D models of nanoparticle-deposition were applied for single/multi-layer on gold-disk-electrodes to analyze coupling efficiency with different size dispersity(50 nm^500 nm).Results showed that nanoparticles with dispersity in one magnitude were effective in increasing availability of electrode surface attachment,so as to improve the rate of combining cell-electrode repeatability.The relative AC impedance results also proved the deposition of platinum nanoparticles was beneficial for lower electrode body impedance and better surface activation treatment.Thus,Monte-Carlo quantitative assessment of surface treatment technology is useful to the establishment of high-throughput platform based on the experimental biology,computational biology and information processing by this combination of research methods.
出处 《传感技术学报》 CAS CSCD 北大核心 2011年第4期480-486,共7页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(30800248 30970738)
关键词 微电极阵列 细胞电生理 Monte-Carlo模型 纳米粒子 电极表面处理 micro-electrodes array sensors(MEAS) cellular electrophysiology nanoparticles Monte-Carlo model
  • 相关文献

参考文献15

  • 1Kovacs G T A,Electronic Sensors with Living Cellular Components [J]. Proceeding of the IEEE,2003,91:915-922.
  • 2lngebrandt. Cardiomyocyte-Trealsistor-Hyhrids for Sensor Application [ J ]. Biosensor & Bioelectronics ,2001 , 16:565 -570.
  • 3Dorielle T. Design Rule for Optimization of Mieroelectrodes Used in Electric Cell-Substrate Impedance Sensing(ECIS) [ J ]. Biosensors and Bioelectronics,2009,24:2071 -2076.
  • 4Benilova I V. Electrochemical Study of Human Olfactory Receptor OR 17-40 Stimulation by Odorants in Solution[ J]. Mater Sci Eng C ,2008,28:633-639.
  • 5Albers W M. Inunobilization of Biomolecules Onto Organized Molecular Assemblies [ J ]. Technical Research Centre of Finland, VTY Publi- cations, 1999,391:37-124.
  • 6Li Q M. A method for in Situ Auto-Renewal of the Surface of Glassy Carbon Electrodes [ J ]. Journal of Electroanalytical Chemistry, 2003,560 : 19-23.
  • 7Cheng M. Surface Modification and Characterization of Chitosma Film Blended with Poly-L-Lysine [ J ]. J Biomater App1,2004,19 :59-75.
  • 8Keese C R, Wegener J, Walker S R, et al. Electrical Wound-Heal- ing Assay for Cells in Vitro [ J ]. Proc Nat Acad Sci USA, 2004, 101:1554-1559.
  • 9Okeqawa T, Pong R C, Li Y,te al. The Role of Cell Adhesion Mol- ecule in Cancer Progression and its Application in Cancer Therapy [J]. Acta Biochem. Poi. 2004,51:445-457.
  • 10Franks W. Impedance Characterization and Modeling of Electrodes for Biomedical Applications Biomedical Engineering [ J ]. IEEE Transactions,2005,52(7 ) : 1295-1302.

同被引文献16

  • 1PRICE D T. RAHMAN A R. BHANSALI S. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS)[J]. Biosens Bioelectron , 2009. 24 (7): 2071-2076.
  • 2FERGUSONJ E. BOLDT C. REDISH A D. Creating low- impedance coatings for neural recording electrodes using electroplating inhibitors[J].J Med Devices. 2009. 3(2): 27523- 27523.
  • 3PORNPRASERTSUK R. CHENGJ. HUANG H. et al. Electrochemical impedance analysis of solid oxide fuel cell electrolyte using kinetic Monte Carlo technique[J]. Solid State Ionics , 2007. 178(3): 195-206.
  • 4MATHERS A. MOON K S. YIJ. A vibration-based PMNPT energy harvester[J]. IEEE Sens J. 2009. 9(7): 731- 739.
  • 5BIOPHYSICS A. Inc. ECIS cultureware[EB/OLJ[2013-08- 29]. http://www.biophysics.com/PDFS. php,.
  • 6NEHER E. Molecular biology meets microelectronics[J]. Nat Biotechnol , 2001. 19(2): 114.
  • 7QIN M. HOU S. WANG L. et al. Two methods for glass surface modification and their application in protein immobilization[J]. Colloids Surf B Biointerfaces , 2007. 60(2): 243- 249.
  • 8MA Z. MAO Z. GAO C. Surface modification and property analysis of biomedical polymers used for tissue engineering[J]. Colloids Surf B Biointerfaces , 2007. 60(2): 137-157.
  • 9MANLY B FJ. Randomization. bootstrap and monte carlo methods in biology[M]. 3rd edn. London: Chapman &. Hall. 2006: 171-257.
  • 10BENILOVA I V. VIDICJ M. PAJOT-AUGY E et al. Electrochemical study of human olfactory receptor OR 17-40 stimulation by odorants in solution[J]. Mater Sci Eng. 2008. 28(5-6): 633-639.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部