期刊文献+

用于语音识别拒识的隐马尔可夫模型状态及状态驻留相关的声学置信量度 被引量:2

HMM STATE AND STATE DURATION DEPENDENT CONFIDENCE MEASURES FOR UTTERANCE REJECTION
下载PDF
导出
摘要 随着语音识别系统继续从实验室转向实际应用,语音拒识就变得愈来愈重要.为解决语音识别系统对识别候选的接受/拒识判决问题,文中提出了基于隐马尔可夫模型(HMM)的语音识别系统中状态和状态驻留相关的声学置信量度准则.给定状态下特征矢量的平均观测先验概率和给定特征矢量状态的后验概率均比较容易设定统一的拒识门限,且不需专门的训练.而状态驻留分布相关法则是基于驻留分布概率和置信区间理论,不仅可设定一个拒识门限,同时可给出语音识别候选的状态驻留可信度.实验表明上述拒识准则能很好地拒识误识别候选和词表外语音(OOV或非关键词)。 Utterance rejection is becoming increasingly important as speech recognition systems continuously migrate from the laboratory to actual applications. Proposed in this paper are state and state duration dependent acoustic confidence measures for acceptance/rejection of recognition hypothesis in speech recognition systems based on hidden Markov model (HMM). The state dependent confidence measure is computed for each frame of speech as the feature vectors output probability or posteriori state probability given the observation features. It is easy to be implemented by using one single global threshold and no extra training is needed. The state duration dependent one is based on the duration distribution probability and confidence interval theory. Although it is required that the state duration distribution be trained, the data can be easily obtained during the traditional HMM training. Experiment results show that the methods can reject incorrect candidates and OOV (out of vocabulary) words effectively, thus significantly increasing the recognition accuracy with low rejection rate.
出处 《计算机研究与发展》 EI CSCD 北大核心 1999年第11期1398-1401,共4页 Journal of Computer Research and Development
基金 北京大学视觉与听觉信息处理实验室基金
关键词 语音识别 拒识 声学置信量度 隐马尔可夫模型 speech recognition utterance rejection acoustic confidence measure confidence interval state duration
  • 相关文献

参考文献3

二级参考文献4

  • 1战普明,1992年
  • 2战普明,博士学位论文,1992年
  • 3Gu Hungyan,IEEE Trans ASSP,1991年,39卷,8期
  • 4王作英,1989年

共引文献8

同被引文献16

  • 1韩玉昌.观察不同形状和颜色时眼运动的顺序性[J].心理科学,1997,20(1):40-43. 被引量:34
  • 2战普明,王作英,陆大.语音识别隐马尔可夫模型的改进[J].电子学报,1994,22(1):9-15. 被引量:9
  • 3田捷,陈新建,张阳阳,杨鑫,何余良,李亮,谢卫华,郑志鹏.指纹识别技术的新进展[J].自然科学进展,2006,16(4):400-408. 被引量:39
  • 4Rahim M G, et al. Discriminative Utterance Verification for Connected Digits Recognition [ J ]. IEEE Transactions on Speech and Audio Processing, 1997,5(3) :266-277.
  • 5X D Huang,A Acero,H Hon. Spoken Language Processing[M].New Jersey, Prentice-Hall PTR,2001.
  • 6Kwang-Sik, et al. Out-of-Vocabulary Word Rejection Algorithm in Korean Variable Vocabulary Word Recognition [ J ]. IEEE International Symposium on Circuits and Systems, Geneva,2000.53 - 56.
  • 7Y F Cong. Noise-dependent Ganssian Mixture Classifiers for Robust Rejection Decision[ J]. IEEE Transactions on Speech and Audio Processing,2002,10(2) :57-64.
  • 8M W Koo, et al. Juang. Speech Recognition and Utterance Verification Based on a Generalized Confidence Score [ J ] . IEEE Transactions on Speech and Audio Processing, 2001,9( 8):821-831.
  • 9Frank W,et al. Confidence Measures for Large Vocabulary Continuous Speech Recognition [ J ]. IEEE Transactions on Speech and Audio Processing,2001,9(3) :288-298.
  • 10Jia Liu, et al. Task Independent Utterance Verification Using Garbage Model Based on Hierarchical Phoneme [ J ]. Chinese Journal of Electronics, 2001,10(4):465-470.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部