期刊文献+

一种鲁棒的骨龄X射线平片自动轮廓提取方法 被引量:3

An robust automatic contour extraction method for skeletal bone age X-ray images
下载PDF
导出
摘要 背景:骨龄X射线平片具有不均匀和复杂性,因而在骨龄自动评价的研究中,手掌轮廓提取的结果往往不理想。目的:采用计算机自动提取手掌轮廓,为骨龄自动评价中图像预处理阶段的研究奠定重要基础。为了解除骨龄评定带来的主观性和不确定性,提出用计算机进行自动评价。方法:在仔细分析骨龄X射线平片的基础上,提出了一种对图像背景的可行有效子采样点方案,并提出用二元三次线性回归方法来模拟图像背景,通过形态学以及二进制标记等一系列操作,最后成功提取出手掌轮廓。结果与结论:采用异常点移除和回归方法相结合来提取轮廓,采取固定阀值,不受阀值选取的困扰,并具有鲁棒性。大量的实验结果表明了该方法提取的手掌轮廓成功率在93%以上,能完全应用于骨龄自动识别的后续研究工作。 BACKGROUND:Due to the non-uniform and complexity of bone age X-rays images,the results of contour extraction in automatic skeletal bone age assessment are often unsatisfactory. OBJECTIVE:To extract palm contour automatically using computer to lay a foundation for image pretreatment of bone age assessment to eliminate subjectivity and uncertainty in bone age assessment. METHODS:Bone age X-ray film was analyzed,and a feasible and effective program on the background image sub-sampling was proposed. Two-dimensional third order linear regression method was proposed to simulate the background images. Using a series of operations including morphological and binary image labeling,the contour of the hand was successful extracted. RESULTS AND CONCLUSION:By combining outliers removal with regression,a fixed threshold was used,which avoids selection of appropriate threshold. Moreover,it is robust. Numerous studies have demonstrated that the success rate of hand contour extraction was over 93%,so this method can be fully used in automatic identification of bone age research.
作者 冉隆科
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2010年第52期9735-9738,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 重庆市渝中区科技计划项目资助,题目“骨龄自动评定系统的关键技术研究及应用”~~
  • 相关文献

参考文献12

  • 1中华人民共和国体育运动委员会.中国人手腕骨发育标准CHN法[S].北京:标准出版社.1992.
  • 2Mentzel H J,Vilser C,Eulenstein M,et al.Assessment of skeletal age at the wrist in children with a new ultrasound device.Pediatr Radiol.2005;35(4):429-433.
  • 3Tanner JM,Whitehouse RH,Cameron N,et al.Assessment of skeletal maturity and prediction of adult height(TW2 method).New York:Academic Press.1975:44-49.
  • 4Maes F,Vandermeulen D,Suetens P.Comparative evauation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information.Med Image Anal.1999;3(4):373-386.
  • 5Pietka E.Computer-assisted bone age assessment based on features automatically extracted from a hand radiograph.Comput Med Imaging Graph.1995;19(3):251-259.
  • 6Pietka E.Ewa Pietka.Computet-assisted bone age assessment-database adjustment.2003,1256:87-92.
  • 7Efford ND.Knowledge-based segmentation and feature analysis of hand-werist radiographs.School of Computer Studies,University of Leeds.1994:596-608.
  • 8Zhang A,Gertych A,Liu BJ.Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones.Comput Med Imaging Graph.2007;31(4-5):299-310.
  • 9Zhang J,Huang HK.Automatic background recognition and removal(ABRR) in computed radiography images.IEEE Trans Med Imaging.1997;16(6):762-771.
  • 10Pietka E,Gertych A,Pospiech S,et al.Computer-assisted bone age assessment:image preprocessing and epiphyseal/ metaphyseal ROI extraction,IEEE Trans.On Medical Imaging.2001,20:715-729.

共引文献1

同被引文献33

  • 1李新军,邵明省.基于Gabor函数能量的指纹识别[J].实验室研究与探索,2010,29(1):185-187. 被引量:4
  • 2陈乐,吕文阁,丁少华.角点检测技术研究进展[J].自动化技术与应用,2005,24(5):1-4. 被引量:45
  • 3中华人民共和国体育运动委员会.中国人手腕骨发育标准CHN法[S].北京:标准出版社.1992.
  • 4段欠华 王慧琴 毛力.一种改进的Harris角点检测算子.科技展望,2010,:47-48.
  • 5Rosenfeld A, Johnston E. Angle detection on digital curves.[C]// IEEE Trans. Computers, 22:875-878, 1973.
  • 6A. Rosenfeld and J.S. Weszka. An improved method of angle detection on digital curves[C]// IEEE Trans. Computers, 24:940-941, 1975.
  • 7Anon. Digital hand atlas database system [EB/OL].[2011-06-20]. http://www.ipilab.org/BAAweb/.
  • 8Mokhtarian F,Suomela R. Robust image corner detection through curvature scale space[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (12): 1376-1381.
  • 9He X.C.,Yung N. C., Curvature scale space corner detector with adaptive threshold and dynamic region of support"[C]//Proceedings of the 17th International Conference on Pattern Recognition, 2:791-794, 2004.
  • 10He X C, Yung N H C, “Corner detector based on global and local curvature properties”[J]. Optical Engineering,2008,47(5):57-65.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部