期刊文献+

T-小波配点边界元法

T-wavelet Collocation Boundary Element Method
下载PDF
导出
摘要 现有T-小波边界元法都基于Galerkin法,要计算二重边界积分,比较复杂。工程中需要一种简便高效的边界元算法。基于δ-函数构造了T-小波,将其应用于边界元系数矩阵压缩,形成T-小波配点边界元法。算例表明,采用T-小波配点边界元法在保持较高精度的同时,计算时间为O(NlgN),内存消耗为O(N)。 Existing T-wavelet boundary element method(BEM) uses Galerkin scheme to discretize boundary integral equations,in which the evaluation of double integrals is complication and time-consuming.A method for constructing T-wavelet using Dirac δ-function is first proposed.By adopting these new wavelets as test functions in weighted residual method,a T-wavelet collocation BEM is then established.The method only involves single-layer integrals,thus easy to realize.Two representative real-world examples clearly show the O(NlgN) computational time and O(N) memory requirements of the method.
机构地区 西北工业大学
出处 《科学技术与工程》 2011年第11期2404-2408,共5页 Science Technology and Engineering
关键词 边界元法 T-小波 小波配点法 矩阵压缩 boundary element method T-wavelet wavelet collocation method matrix compression
  • 相关文献

参考文献9

  • 1Beylkin G, Coifman R, Rokhlin V. Fast wavelet trans - forms and numerical algorithms. Comm Pure Appl Math, 1991 ; 37:141-183.
  • 2Dahmen W, Harbreeht H, Schneider R. Compression techniques for boundary integral equations optimal complexity estimates. SIAM J Numer Anal, 2006 ; 43 (6) : 2251-2271.
  • 3Tauseh J. A variable order wavelet method for the sparse representa- tion of layer potentials in the non-standard form. J Numer Math, 2004; 12(3) : 233-254.
  • 4Tausch J, White J. Muhiscale bases for the sparse representation of boundary integral operators on complex geometry. SIAM J Sci Corn-put, 2003 ; 24(5) : 1610-1629.
  • 5Tausch J. Sparse BEM for Potential Theory and stokes flow using vari- able order wavelets. Comput Mech, 2003 ; 32 : 312-319.
  • 6Xiao J, Tausch J, Wen L. Approximate moment matrix decomposition in wavelet Galerkin BEM. Comput. Methods Appl. Mech. Engrg. , 2008 ; 197 : 4000-4006.
  • 7Xiao J, Tausch J, Hu Y. A-posteriori compression of wavelet-BEM matrices. Computational Mechanics, 2009 ; 44(5) : 705-715.
  • 8校金友,曹衍闯,王焘.准消失矩变阶小波Galerkin边界元法[J].西北工业大学学报,2009,27(6):786-790. 被引量:1
  • 9校金友,曹衍闯,Johannes Tausch,张铎.电容提取的新摄动方程及小波边界元解法[J].计算物理,2010,27(2):240-244. 被引量:1

二级参考文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部