摘要
本文在确定对系统起决定作用的参数、变量集及目标约束集的基础上,采用多层前馈型神经网络作为多目标优化计算器,用改进的遗传算法对神经网络进行训练,为复杂背景下的多目标优化设计提供了一种新方法。
On the basis of determining those played a decisive role upon the system such as the parameters, variable ensemble and assemblage of objective constraints, this paper adopted multi-layer forward feeding typed neural net as the multiple objective optimization calculator and carried out a training on the neural net by the use of inproved genetic algorithm and thus provided a kind of new method for the multiple objective design under complicated backgrounds.
出处
《机械设计》
CSCD
北大核心
1999年第11期13-15,共3页
Journal of Machine Design
基金
国家自然科学基金
关键词
柔性装配系统
多目标优化
遗传算法
优化设计
Neural net
Flexible assembly system (FAS)
Multiple objective optimization
Genetic algorithm(GA). Fig 4 Tab 1 Ref 4“Jixie Sheji”8496