期刊文献+

连续相位调制信号的单通道盲分离算法研究 被引量:10

Research on Single Channel Blind Separation Algorithm for Continuous Phase Modulation Signals
下载PDF
导出
摘要 频谱紧凑的恒包络数字调制技术是未来数字通信的发展方向之一,而对于这类调制信号的单通道盲分离研究目前还较为少见,有效地解决连续相位调制信号的单通道盲分离问题具有较大意义。本文基于最优贝叶斯估计准则,通过重要性函数来接近系统状态的真实后验概率分布,利用改进的粒子滤波算法将连续相位调制信号的单通道盲分离问题转变为码元序列和未知参数序贯估计问题,从而实现盲分离。该算法通过对接收信号的过采样以及数据的递归调用,利用了更多的接收波形信息,有效克服了先验信息的不足,抑制了噪声的影响,并能克服相位连续性给算法带来的码间串扰。仿真实验以应用广泛的GMSK调制信号为例。实验结果表明,该算法明显优于标准粒子滤波算法,具有较好的符号估计性能和参数收敛性能。 The digital modulation with the characteristics of constant envelope and compact spectrum is one of the research emphases of digital communication.However,few research was carried on the single channel blind separation of this kind of signal.It is of great significance to solve the problem of single channel blind separation of continuous phase modulated signals.The paper is based on optimal Bayesian estimation criteria and the real posterior probability distribution of the system state is approached by means of important functions.The improved particle filtering algorithm is applied to solve the problem of single channel blind separation of continuous phase modulated signals and realize the sequential estimation of the symbols and unknown parameters.The proposed algorithm makes use of more information of received signal waveform through over-sampling and recursion of the data.So the deficiency of the transcendental information can be effectively overcome and the noise can be effectively suppressed.At the same time,IS1 brought by continuous phase can be overcome.Simulation takes GMSK modulated signal as example which is widely used in communication and the results show that the proposed algorithm is superior to standard particle filtering algorithm and has favorable performance in symbol estimation and parameter convergence.
出处 《信号处理》 CSCD 北大核心 2011年第4期569-574,共6页 Journal of Signal Processing
基金 国家自然科学基金(No.60872113)
关键词 高斯最小频移键控 单通道 粒子滤波 Gaussian Minimum Shift Keying(GMSK) Single channel Particle Filtering
  • 相关文献

参考文献7

  • 1Cedric Fevotte, Simon J. Godsill. A Bayesian Approach for Blind Separation of Sparse Sources [ J ]. IEEE Transactions On Audio, Speech, And Language Processing, 2006, 14(6) :2174-2188.
  • 2James R. Hopgood, Peter J. W. Rayner. Single Channel Nonstationary Stochastic Signal Separation Using Linear Time-Varying Filters [ J ]. IEEE Transaction On Signal Processing, 2003, 51 ( 7 ) : 1739-1752.
  • 3Arulampalam S, Maskell S, Gordon N. A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking[ J]. IEEE Transactions On Signal Processing, 2002, 50(2) :174-188.
  • 4Vaclav Smidl, Anthony Quinn. Variational Bayesian Filtering [ J]. IEEE Transaction On Signal Processing, 2008, 56(10) :5020-5030.
  • 5Sergio Bittanti, Sergio M. Savaresi. On the Parameterization and Design of an Extended Kalman Filter Frequency Tracker[ J]. IEEE Transaction On Automatic Control, 2000, 45 ( 9 ) : 1718-1724.
  • 6Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation [ J ]. Proceedings of the IEEE, 2004, 92 ( 3 ) :401-422.
  • 7崔荣涛,李辉,万坚,戴旭初.一种基于过采样的单通道MPSK信号盲分离算法[J].电子与信息学报,2009,31(3):566-569. 被引量:34

二级参考文献9

  • 1蔡权伟,魏平,肖先赐.基于模型拟合的重叠信号盲分离方法[J].电子学报,2005,33(10):1794-1798. 被引量:6
  • 2Forney G D. Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference[J]. IEEE Trans. on Information Theory, 1972, IT-18(3): 363-378.
  • 3Li Yuanqing, Amari S, Cichocki A, Daniel W C H. and Xie Shengli. Undetermined blind source separation based on Sparse Representation[J]. IEEE Trans. on Signal Processing, 2006, 54(2): 423-437.
  • 4Theis F J, Lang E W, and Puntonet C G. A geometric algorithm for overcomplete linear ICA[J]. Neurocomputing, 2004, 56: 381-398.
  • 5Heidari S and Nikias C L. Co-channel interference mitigation in the time-scale domain: the CIMTS algorithm[J]. IEEE Trans. on Signal Processing, 1996, 44(9): 2151-2162.
  • 6Warner E S and Proudler I K. Single-channel blind signal separation of filtered MPSK signals[J]. IEEE Proceedings, Radar, Sonar and Navigation, 2003, 150(6): 396-402.
  • 7Liu Kai, Li Hui, Dal Xuchu, and Xu Xiaodong. Single channel blind signal separation of cofrequency MPSK signals[C]. Proceedings of International Conference on Communication, Internet and Information Technology (CIIT 2006), St. Thomas, USVI, USA, Nov. 2006: 42-46.
  • 8Arulampalam M S, Maskell S, Gordon N, and Clapp T. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002 50(2): 174-188.
  • 9Liu J S and Chen R. Sequential monte carlo methods for dynamic systems[J]. Journal of American Statistical Association, 1998, 93(443): 1032-1043.

共引文献33

同被引文献93

  • 1刘云,郭洁,叶芝慧,宋铁成,沈连丰.频谱重叠信号分离的循环平稳算法[J].东南大学学报(自然科学版),2005,35(3):333-337. 被引量:14
  • 2蔡权伟,魏平,肖先赐.信道重叠信号分离方法的发展与展望[J].电子学报,2005,33(B12):2446-2454. 被引量:4
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4付迪,高勇.非对称PCMA卫星信号的截获方法[J].现代电子技术,2007,30(7):28-30. 被引量:22
  • 5叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 6彭玉华.小波变换与工程应用[M].北京:科学出版社,2005.
  • 7Davies ME, and James CJ. Source separation using single channel ICA [ J ]. Signal Processing, 2007,87 ( 8 ) : 1819 - 1832.
  • 8Xu Peng, and Yao Dezhong. Development and evaluation of the sparse decomposition method with mixed over-complete dictionary for evoked potential estimation [ J ]. Computers in Biology and Medicine,2007,37(12) :1731-1740.
  • 9Wang Zhisong, Maier A, Leopold DA, Logothetis NK, Li- ang Hualou. Single-trial evoked potential estimation using wavelets [J]. Computers in Biology and Medicine,2007, 37 (4) :463-473.
  • 10Kong Xuan, Qiu Tianshuang. Adaptive estimation of la- tency change in evoked potentials by direct least mean p- norm time-delay estimation [ J ]. IEEE Transactions on Biomedical Engineering, 1999,46 ( 8 ) :994-1003.

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部