期刊文献+

ICA-R算法在旋转机械故障信号提取中的应用 被引量:1

Application of ICA-R algorithm in extraction of fault signals from rotating machinery
下载PDF
导出
摘要 能否有效地提取故障信号的特征是对旋转机械进行故障诊断准确与否的关键所在。本文在介绍独立分量分析方法的基础上研究了基于参考信号的独立分量分析(ICA-R)算法,首先针对轴承与齿轮两类典型的旋转机械故障信号进行仿真,然后模拟出四路观测信号,同时根据先验知识建立参考信号,最后运用ICA-R算法对观测信号进行特征提取,并与仿真的故障信号进行对比分析。结果证明,ICA-R算法在旋转机械故障信号的特征提取中具有很强的优势,可实现弱故障信号的有效提取。 Whether the feature of fault signal can be extracted effectively is the key step in fault diagnosis of rotating machinery.Based on the study of Independent Component Analysis(ICA) method this paper studies a new algorithm of ICA with Reference(ICA-R).Firstly,two typical kinds of rotating machinery fault signals including bearing and gear fault are simulated.Four observation signals are then constructed with the reference signal established according to a priori knowledge.Finally,the feature extraction is well done through applying ICA-R algorithm to observation signals.Results show that ICA-R algorithm in rotating machinery fault signal feature extraction has strong superiority and can be used to effectively extract weak fault signals.
作者 王辉 王娟
出处 《深圳信息职业技术学院学报》 2011年第1期53-57,共5页 Journal of Shenzhen Institute of Information Technology
关键词 ICA-R 旋转机械 独立分量分析 轴承故障 齿轮故障 ICA-R rotating machinery ICA bearing fault gear fault
  • 相关文献

参考文献1

二级参考文献2

  • 1Xu M,Shock Vib Dig,1995年,5/6期,11页
  • 2梅宏斌,博士学位论文,1993年

共引文献34

同被引文献8

  • 1滕春英,须文波,孙俊.基于QPSO的图像融合算法的研究[J].计算机应用研究,2007,24(5):298-299. 被引量:1
  • 2HYVARINEN A. Independent component an-alysis: Algorithms and applications [ J ]. Neural Networks, 2000(13) :411 -430.
  • 3SUN Jun, FENG Bin ,XU Wen-bo. Particle swarm optimization with particles having quantum hehavior[C]// Congress on Evolutionary Computation Portland. OR: IEEE, 2004 : 325 - 331.
  • 4COMOM P. Independent component analysis; A New Con - cept [ J ]. Signal Proeessing, 1994,36 ( 3 ) : 287 -314.
  • 5KENNEDY J, EBERHAR R C. Particle swarm optimization [C]//International Conference on Neural Networks. Piscataway, NJ : IEEE, 1995 : 1942 - 1946.
  • 6BERCH F V D. An analysis of particle swarm optimization [D]. Pretoria: University of Pretoria, 2002.
  • 7郭武,朱长仁,王润生.一种改进的FastICA算法及其应用[J].计算机应用,2008,28(4):960-962. 被引量:20
  • 8杨绿溪,李克,周长春,何振亚.一种用于超高斯和亚高斯混合信号盲分离的新算法[J].东南大学学报(自然科学版),1999,29(1):1-7. 被引量:6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部