期刊文献+

一种有效的去除图像混合噪声的算法 被引量:5

An Efficient Algorithm for Mixed Noise Removal in Image
下载PDF
导出
摘要 提出一种有效的去除图像混合噪声的算法.该方法包括空间域的脉冲噪声去除和小波域的高斯噪声去除两个阶段.空间域的脉冲噪声去除利用一种加权平均的同组滤波算法进行,完成图像初始滤波;小波域的高斯噪声去除则利用NeighShrink阈值化方法对小波系数进行收缩,其中,为了提高峰值信噪比和增强视觉效果,修正了NeighShrink方法中小波系数的收缩因子.最后,对所提算法进行了仿真研究,仿真结果表明所提算法能有效去除图像中的脉冲和高斯混合噪声,并较好地保存了图像细节. An efficient algorithm for mixed noise removal in image is studied in this paper including space impulse noise removal and wavelet Gaussian noise removal.Firstly,a weighted algorithm based on peer group filter is given to filter impulse noise.Secondly,the NeighShrink method is used to shrink the wavelet coefficients.In order to improve the visual quality of the denoising image,the shrinkage factor for the wavelet coefficient is modified by introducing an extra parameter.At last,simulations are conducted on the presented algorithm,and the simulation result shows that the presented algorithm can not only remove mixed Gaussian and impulse noise in image efficiently,but also preserve image edge information.
作者 侯艳丽
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2011年第2期197-200,共4页 Journal of Henan University:Natural Science
基金 河南省科技厅基础与前沿技术研究计划项目(102300410242) 河南省教育厅自然科学基金项目(2010A510009)
关键词 图像 混合噪声 小波变换 同组滤波 NeighShrink image mixed noise wavelet transform peer group filtering NeighShrink
  • 相关文献

参考文献15

  • 1CHAN R H, CHUNG W H, NIKOI~OVA M. An interactive procedure t'or removing random-valued impulse noise[J]. IEEE Signal Processing Letters, 2004, 11 (12) : 921 -924.
  • 2CHAN R H, CHUNG W H, NIKOLOVA M. Salt and pepper noise removal by median type noise detectors and detail preserving regularization[J]. IEEE Transaction on Image Processing,2005, 14(10) : 1479-1485.
  • 3NIKOLOVA M. A variational approach to remove outliers and impulse noise[J]. Journal of Mathematical Imaging and Vision, 2004,20: 99-120.
  • 4WANG Z, ZHANG D. Progressive switching median filter for the removal of impulse noise from highly corrupted images [J]. IEEE Transaction on Circuits System, 1999,46(1): 78-80.
  • 5LUKAC R. Adaptive vector median filtering[J]. Pattern Recognition Letters, 2003,24 (12): 1889-1899.
  • 6XU H X, ZHU G X, PENG H Y. Adaptive fuzzy switching filter for images corrupted by impulse noise[J]. Pattern Recognition Letters,2004, 25 (15): 1657-1663.
  • 7ALAJI.ANA N, KAMELA M, JERNIGAN E. Detail preserving impulsive noise removal[J]. Signal Processing= Image Communication, 2004, 19(10):993- l003.
  • 8XIE J C, ZHANG D L, XU W L. Overview on wavelet image denoising[J]. Journal of Image and Graphics,2002, 7(3): 209-217.
  • 9DONOHO D I., JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of American Statistic Associaton, 1995, 90( 12 ) : 1200 - 1224.
  • 10DONOHO D I.. Denoising by soft-thresholding[J] IEEE Transactions on Information Theory, 1995, 41(3):613-627.

二级参考文献9

共引文献109

同被引文献40

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部