期刊文献+

基于纹理特征的神经网络分类器用于肝硬化核磁共振图像分类识别 被引量:1

Use of texture-based neural network classifier in classified recognition of liver cirrhosis MRI
原文传递
导出
摘要 目的 研究基于纹理特征的神经网络分类器用于肝硬化核磁共振图像(MRI)分类诊断方法.方法 选取经大连医科大学附属第二医院临床和实验室检查确诊的18例患者的肝脏MR图像,其中肝硬化10例,正常肝脏8例,通过手工分割共获取MR图像感兴趣区(ROI)170个(肝硬化组88个,正常肝脏组82个).通过灰度共生矩阵提取了2组170个ROI0°、45°、90°、135°4个方向的纹理特征参数(共计56个),采用盒状图评估56个纹理特征参数区分肝硬化和正常肝脏的性能,获得2组间可分性好的纹理特征参数24个.分别采用全部的56个纹理特征参数(特征组A)、完全随机选择24个纹理特征参数(特征组B)及两组间可分性好的24个纹理特征参数(特征组C)训练反向传播(BP)神经网络,其中用于网络训练的ROI为110个,而测试BP神经网络的ROI为60个.结果 盒状图评价显示0°,45°,90°,135°4个方向上的能量、对比度、相关性、逆差矩、和方差以及差平均共计24个特征参数在肝硬化组和正常肝脏组间可分性较好.特征组C的正确识别率最高(95.00%,57/60),高于特征组A和特征组B(78.33%,47/60;88.33%,53/60;P<0.05).结论 基于纹理特征的BP神经网络分类器适于肝硬化和正常肝脏MR图像的分类识别. Objective To explore the use of neural network classifier as a method for classified MRI diagnosis of liver cirrhosis. Methods MR images of 18 patients with confirmed diagnosis based on clinical and laboratory investigations in the Second Affiliated Hospital of Dalian Medical University were included in the study. These patients comprised 10 with cirrhosis and 8 with normal liver. Manual segmentation of these MRIs yielded 170 regions of interest (ROIs) which included 88 of liver cirrhosis and 82 of normal liver. Each of 14 texture eigenvalues (56 in total) in four directions (0°, 45°, 90° and 135°) of these two groups of ROIs were extracted with grayscale co-occurrence matrices. Performance of the 56 texture eigenvalues in discrimination of cirrhotic from normal liver tissues was evaluated by box plot, thereby 24 of 56 texture eigenvalues with good discrimination performance were obtained. A neural network BP classifier was trained with the whole set of 56 eigenvalues (Eigen set A), or a 24-value random subset (Eigen set B),or a subset containing the 24 well-discriminating eigenvalues (Eigen set C). Training set included 110 ROIs and the testing set involved 60 ROIs. Results The box plot evaluation revealed 24 texture eigenvalues in directions 0°, 45°, 90° and 135° (energy, resolution, relevance, sum-of-square difference, mean deviation,etc) that best discriminated MRI of cirrhotic liver from normal. Eigen set C yielded the highest rate of correct recognition (95.00%,57/60) as compared with eigen sets A (78.33%,47/60) and B (88.33%, 53/60, P〈0.05).Conclusion The texture-based neural netword classifier seems ideal for classifying MR imaging of liver cirrhosis from normal.
出处 《中华生物医学工程杂志》 CAS 2010年第6期589-592,共4页 Chinese Journal of Biomedical Engineering
关键词 肝硬化 磁共振波谱学 神经网 信号识别颗粒 灰度共生矩阵 Liver cirrhosis Magnetic resonance spectroscopy Nerve net Signal recognitionparticle Grayscale co-occurrence matrix
  • 相关文献

参考文献6

二级参考文献15

  • 1姜慧研,司岳鹏,雒兴刚.基于改进的大津方法与区域生长的医学图像分割[J].东北大学学报(自然科学版),2006,27(4):398-401. 被引量:16
  • 2章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 3章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 4Oberti F,Valsesia E,Pilette C,et al.Noninvasive diagnosis of hepatic fibrosis or cirrhosis[J].Gastroenterology,1997,113:1609-1616.
  • 5Zhang X,Fujita H,Kanematsu M,et al.Improving the classifycation of Cirrhotic liver by using texture features[C]∥Engineering in Medicine and Biology 27th Annual International Conference.Shanghai,2005:867-870.
  • 6Shapiro J M.Embedded image coding using zerotrees of wavelet coefficients[J].IEEE Trans Signal Processing,1993,4(12):3445-3462.
  • 7Creusere C D.New method of robust image compression based on the embedded zerotree wavelet algorithm[J].IEEE Trans Image Processing,1997,6(10):1436-1446.
  • 8Rogers J,Cosman P.Wavelet zerotree image compression with packetization[J].IEEE Signal Processing Letters,1998,5(5):105-107.
  • 9Said A,Pearlman W A.A new fast and efficient image codec based on set partitioning in hierarchical trees[J].IEEE Trans on Circuits and Systems for Video Technology,1996,6(3):243-249.
  • 10Otsu N.A threshold selection method from gray-level histograms[J].IEEE Trans on Systems,Man,and Cybernetics,1979,9(1):62-66.

共引文献64

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部