期刊文献+

基于自适应逆的微型飞行器飞行控制系统 被引量:10

Flight Control System of MAV Based on Adaptive Dynamic Inversion
下载PDF
导出
摘要 飞翼式微型飞行器由于尺寸小、速度低、气动布局特殊和飞行环境复杂多变,其飞行力学具有显著的非线性和非定常特性,传统的控制方法已不能满足要求。本文运用时标分离理论,设计了快变量和慢变量动态逆,同时引入在线神经网络补偿动态逆误差,并采用伪控制补偿器消除作动器和自适应单元之间的相互影响,在此基础上提出了飞翼式微型飞行器的自适应飞行控制系统,并与采用动态逆-PID控制方法设计的飞行控制系统进行比较。仿真结果表明:基于自适应逆的飞行控制系统,具有较强的鲁棒性和指令跟踪能力,比动态逆-PID飞行控制系统更适合于微型飞行器。 The flight dynamics of flying wing micro air vehicle(MAV) is remarkably nonlinear and unsteady because of MAV′S small size,low speed,special aerodynamic configuration and complex flight environment.The traditional control methods are incompatible with the development of MAV.The dynamic inversions to slow states and fast states are designed using the theory of time-scale separation.On-line neural networks are introduced to compensate the dynamic inversion errors, and pseudo control compensations are used to cancel the interaction between the actuators and the adaptive factors.The adaptive flight control system of flying wing MAV is studied based on the theories above and compared with the flight control system using dynamic inversion-PID.The simulation results demonstrate that the flight control system based on adaptive dynamic inversion is robust and capable of following commands.Compared with the dynamic inversion-PID control system,the adaptive control system is more suited to MAV.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第2期137-142,共6页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 微型飞行器 飞行控制系统 神经网络 动态逆 micro air vehicle flight control stytems neural networks dynamic inversion
  • 相关文献

参考文献11

  • 1Lane S H. Flight control design using nonlinear in-verse dynamics [J]. Automatica, 1988,24 (4) : 471- 483.
  • 2Hovakimyan N, Lavretsky E, Sasane A. Dynamic inversion for nonaUiine-in-control systems via time- scale separation[J]. Journal of Dynamical and Con- trol Systems, 2007,13(4) :451-465.
  • 3刘燕斌,陆宇平.非线性自适应控制在无尾飞控系统中的应用[J].航空学报,2006,27(5):903-907. 被引量:5
  • 4姚彦龙,孙健国.基于神经网络逆控制的发动机直接推力控制[J].推进技术,2008,29(2):249-252. 被引量:23
  • 5Lavretsky E, Hovakimyan N. Adaptive dynamic in-version for nonaffine-in-control uncertain systems via time-scale separation[J]. Journal of Dynamical and Control Systems, 2008,14 (1) : 33-41.
  • 6Johnson E N. Limited authority adaptive [light con- troll-D]. Georgia.. Georgia Institute of Technology, 2000.
  • 7Idan M, Johnson M, Anthony J C. Hierarchical ap- proach to adaptive control for improved flight safety[-C]//AIAA Guidance, Navigation and Control Con- ference. Reston, VA: AIAA, 2002, 25 (6): 1012- 1020.
  • 8罗东明,昂海松,周军,郑祥明.螺旋桨式微型飞行器飞行特性分析[J].航空计算技术,2003,33(3):35-38. 被引量:4
  • 9Johnson E N, Kannan S K. Adaptive trajectory con-trol for autonomous helicopters[J]Journal of Guid- ance, Control, and Dynamics, 2005,28 (3) : 524-538.
  • 10王辉,黄万伟.基于动态逆和神经网络的机动弹头姿态控制系统设计[J].航天控制,2007,25(3):13-16. 被引量:3

二级参考文献21

  • 1陈恬,孙健国.基于相关性分析和神经网络的直接推力控制[J].南京航空航天大学学报,2005,37(2):183-187. 被引量:9
  • 2王辉,徐锦法,高正.基于开放平台和神经网络的自主飞行控制系统研究[J].信息与控制,2005,34(2):240-244. 被引量:1
  • 3亚历山大洛夫著 王适存 王培生 彭炎午译.空气螺旋桨[M].北京:高等教育出版社,1954..
  • 4亚历山大洛夫著 王适存 王培生 彭炎午译.空气螺旋桨[M].北京:高等教育出版社,1954..
  • 5Grasmeyer J M,Keennon M T. Development of the Black Widow Micro Air Vehicle[J]. AIAA Paper No.2001 - 0127,2001.
  • 6J.M. Rolfe, K.J. Staples. Flight Simulation[M]. Cambridge Univerity Press, 1992.
  • 7张韵华 奚梅成 陈效群.数值计算方法和算法[M].北京:科学出版社,2002..
  • 8Johnson E N,Calise A J.Pseudo-control Hedging:A New Method for Adaptive Control[A].In Workshop on Advances in Guidance and Control Technology[C],Redstone Arsenal,Alabama,2000.
  • 9Johnson E N,Calise A J,Corhan J C.Adaptive Guidance and Control for Autonomous Launch Vehicles[A].Proceedings of IEEE.
  • 10Calise A J,Johnson E N,Johnson M D,etal.Applications of Adaptive Neural-network Control to Unmanned Aerial Vehicles[R].AIAA/ICAS International Air and Space Symposium and Exposition:The Next 100 Years,Dayton,OH,July 2003.

共引文献31

同被引文献100

引证文献10

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部