期刊文献+

基于尺度不变特征的眼底图像自动配准与拼接 被引量:4

Automatic Fundus Images Registration and Mosaic Based on SIFT Feature
下载PDF
导出
摘要 针对眼底图像对比度低、光照不均匀、不同视场的图像间存在几何畸变等特点,提出了一种基于尺度不变特征的眼底图像自动配准与拼接算法。该算法分别提取同态滤波增强后的待配准眼底图像的尺度不变特征点,并用向量进行描述,确定相邻两图像特征点的匹配关系,在M LESAC算法中使用透视变换模型去除误匹配点对,计算匹配点对之间的变换矩阵,进行图像空间变换,完成配准和拼接。对实际眼底照相机获取的多幅图像配准与拼接结果表明,该算法具有很好的鲁棒性和稳健性,配准精度达到像素级,可以实现眼底图像的高精度自动配准与拼接。 An automatic fundus image registration and mosaic algorithm based on scale invariant feature transform(SIFT) feature is presented to overcome the characteristics of low contrast,nonuniform illumination and the geometric distortion between different fields of view of the fundus images.Fundus images are enhanced by homomorphism filtering,then the SIFT features of fundus images are extracted and described using vectors to determine the matching feature point pairs between two images.Outlier point pairs are rejected using MLESAC algorithm employed perspective model,the transformation matrix is then computed according to purified matching point pairs between images.And finally,image registration and image mosaic are implemented by correcting the distorted image with a spatial transform.The registration and mosaic results of multiple images obtained by fundus camera show that the algorithm is robust and stable with registration accuracy up to pixel level,and highprecision automatic fundus image mosaic can be achieved.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第2期222-228,共7页 Journal of Nanjing University of Aeronautics & Astronautics
基金 江苏省333工程(2007-16-59)资助项目 江苏省科技支撑(BE2010652)资助项目 南京航空航天大学专项科研(20100027)资助项目
关键词 眼底图像 尺度不变特征变换 图像配准 图像融合 图像拼接 fundus images scale invariant feature transform(SIFT) image registration image fusion image mosaic
  • 相关文献

参考文献12

  • 1Brown L G. A survey of image registration tech-niques[J]. ACM Computing Surveys, 1992, 24(4) : 325-376.
  • 2Zitovd B, Flusser J. Image registration methods: a survey[J]. Image and Vision Computing, 2003,21 (11):977-1000.
  • 3Can A, Stewart C V, Roysam B,et al. A feature- based, robust, hierarchical algorithm for registeringpairs of images of the curved human retina [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (3) : 347-364.
  • 4Laliberte F, Gagnon L. Registration and fusion of retinal images: an evaluation study [J]. IEEE Transactions on Medical Imaging, 2003,22 (S) : 661- 673.
  • 5Ryan N, Heneghan C, de Chazal P. Registration of digital retinal images using landmark correspondenceby expectation maximization [J]. Image and Vision Computing, 2004,22 (11) : 883-898.
  • 6Choe T E, Cohen I. Registration of multimodal fluo- rescein images sequence of the retina [C]// 10th IEEE International Conference on Computer Vision. Los Alamitos.- IEEE, 2005,1:106-113.
  • 7Chanwimaluang T, Fan G L, Fransen S R. Hybrid retinal image registration[J]. IEEE Transactions on Information Technology in Biomedicine, 2006, 10(1):129-142.
  • 8Yang Gehua, Stewart C V, Sofka M, et al. Regis-tration of challenging image pairs: initialization, es- timation, and decision [J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2007,29 (11):1973-1989.
  • 9Lowe D G. Distinctive image features from scale-in- variant keypoints[J]. International Journal of Com- puter Vision, 2004,60(2) : 91-110.
  • 10Lindeberg T. Scale-space theory: a basic tool for analysing structures at different scales[J]. Journal of Applied Statistics, 1994,21 (2) : 224-270.

同被引文献26

  • 1聂生东,司京玉.医学显微图像自动拼接的方法研究[J].中国生物医学工程学报,2005,24(2):173-178. 被引量:11
  • 2李胜全,滕惠忠,凌勇,刘雁春,严晓明.侧扫声纳图像实时增强技术[J].应用声学,2006,25(5):284-289. 被引量:9
  • 3ZITOV(A) B,FLUSSER J. Image registration methods:a survey[J].Image and Vision Computing,2003,(11):977-1000.
  • 4LOWE D G. Object recognition from local scale-invariant features[A].New York:IEEE Press,1999.1150-1157.
  • 5LOWE D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,(02):91-110.doi:10.1023/B:VISI.0000029664.99615.94.
  • 6BAY H,ESS A,TUYTELAARS T. Surf:speeded up robust features[J].Computer Vision and Image Understanding,2008,(03):346-359.
  • 7BAY H,TUYTELAARS T. SURF:speeded up robust features[A].Beilin:Springer-Verlag,2006.404-417.
  • 8CHRISTOFFER V,ACHIM L. SIFT,SURF and seasons:long-term outdoor localization using local features[A].Amsterdam:North-Holland,2007.253-258.
  • 9ARTURO G,OSCAR M,MONICA B. A comparative evaluation of interest point detectors and local descriptors for visual SLAM[J].Mach Vision & Appl,2009,(06):905-920.
  • 10MURILLO A C,GUERRERO J J,SAGUES C. Surf features for efficient robot localization with omnidirectional images[A].New York:IEEE Press,2007.3901-3907.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部