期刊文献+

张量积T+H-Bezoutian及其矩阵表示

Tensor Toeplitz Plus Hankel Bezoutian and Its Matrix Representations
下载PDF
导出
摘要 介绍张量积T+H-Bezoutian和一个变换的定义,给出张量积T+H-Bezoutian的矩阵表示方法,讨论如何通过矩阵基本方程来确定矩阵生成函数的多项式,得到了一个阶为(n-2)m r×(n+2)m r的矩阵与矩阵基本方程有着密切的关系,最后对具有特殊形状的T+H矩阵的逆的生成函数的表达形式做了简单的描述. The definitions of Tensor Toeplitz plus Hankel Bezoutians and a transformation are introduced, then the matrix representation of Tensor Toeplitz plus Hankel Bezoutians is given. Furthermore the method to determine the polynomials of marix generating function through the fundamental equation is discussed and a close relation between the ( n - 2) mr × ( n + 2 ) mr matrix and fundamental equation is obtained. Finally, the expression of generating functions for the inverse of special T + H matrix is simply described.
作者 孙彬
出处 《信阳师范学院学报(自然科学版)》 CAS 2011年第2期141-145,共5页 Journal of Xinyang Normal University(Natural Science Edition)
关键词 T+H矩阵 T+H-Bezoutian 张量积 矩阵表示 T + H Bezoutian T + H matrix tensor product matrix representation.
  • 相关文献

参考文献5

  • 1Heinig G,Rost K. On the inverses of Toeplitz plus Hankel matr/ces[J]. Linear Algebra Appl, 1988,106:39-52.
  • 2Heinig G,Rost K. Algebraic Methods for Toeplitz-like matrices and operators[ C]//Operators Theory:Advances and Applications,Vol 13. Basel: Birkhanser Verlag, 1984.
  • 3Heinig G. On the concepts of Bezoutian and Resolvent for operator bundles[J]. Functional Anal Appl,1977,11:241-242.
  • 4Heinig G, Rost K T. Matrix representations of Toeplitz plus Hankel matrix inverses [ J ]. Linear Algebra Appl, 1989,113:65-78.
  • 5Fuhrmann P A, Helmke U. Tensored polynomial models[ J]. Linear Algebra App1,2010 ,432 :678-721.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部