期刊文献+

R^3中主曲率满足1/(k_1)-1/(k_2)=c的旋转曲面

The Rotation Surfaces with Principal Curvature Satisfying 1/(k_1)-1/(k_2) =c in R^3
原文传递
导出
摘要 研究欧氏空间R^3中主曲率满足1/k_1-1/k_2=c的旋转Weingarten曲面,其中c∈R为常数,k_1,k_2是曲面上一点处的两个主曲率.我们对满足这种关系的旋转Weingarten曲面进行了分类,并且发现这些曲面在每一类中彼此都是平行的. We study Weingarten surfaces in Euclidean 3-space that satisfy a Weingarten relation of 1/κ_1—1/κ_2=c,where c∈R andκ_1,κ_2 denote the principal curvature at each point of the surface.We have classified all the rotational Weingarten surfaces that satisfies the relationship of above,and we find that all these surfaces are parallel each other.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第3期427-434,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10871173)
关键词 WEINGARTEN曲面 主曲率 平行曲面 Weingarten surfaces principal curvature parallel surfaces
  • 相关文献

参考文献7

  • 1Rafael LSpez, Linear Weingarten surfaces in Euclidean and hyperbolic space, Supported by MEC-FEDER grant no. MTM2007-61775 and Junta de Andaluc'ia grant no, P06-FQM-01642, 2009, 6.
  • 2Weingarten J., Ueber eine Klasse auf einander abwickelbarer Fl~achen, J. Reine Angew. Math., 1861, 59: 382-393.
  • 3Weingarten J., Ueber die Flachen, derer Normalen eine gegebene Flgche beriihren, J. Reine Angew. Math., 1863, 62: 61-63.
  • 4Huang X. G., The Weingarten surfaces in R^3, Acta Mathematica Sinica, Chinese Series, 1988, 31(3): 332-340.
  • 5Kuhnel W., Steller M., On closed Weingaxten surfaces, Monatsh Math., 2005, 146: 113-126.
  • 6vamBrunt B. K., Grant K., Potential applications of Weingarten surfaces in CAGD, I: Weingarten surfaces and surface shape investigation, Comput Aided Geom. Des., 1996, 13: 569-582.
  • 7Chen W. H., Differential Geometry, Peking University Press, 2006, 6. ISBN 7-301-10709-9/O.0696, 370-372 (in Chinese).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部