期刊文献+

GPS/VISNAV integrated relative navigation and attitude determination system for ultra-close spacecraft formation flying 被引量:5

GPS/VISNAV integrated relative navigation and attitude determination system for ultra-close spacecraft formation flying
下载PDF
导出
摘要 For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance. For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期283-291,共9页 系统工程与电子技术(英文版)
关键词 control and navigation relative navigation federalKalman filter spacecraft formation flying global position system(GPS) vision navigation (VISNAV). control and navigation, relative navigation, federalKalman filter, spacecraft formation flying, global position system(GPS), vision navigation (VISNAV).
  • 相关文献

参考文献26

  • 1A. Moccia, S. Vetrella. A tethered interferometric synthetic aperture radar (SAR) for a topographic mission. 1EEE Trans. on Geoscience and Remote Sensing, 1992, 30(1): 103-109.
  • 2T. Weismuller, M. Leinz. GN&C technology demonstrated by the orbital express automomous rendezvous and captrue sensor system. Proc. of 29th Annual AAS Guidance and Control Con- ference, 2006.
  • 3J. E How, M. Tillerson. Analysis of the impact of sensor noise on formation flying control. Proc. of the American Control Con- ference, 2001: 3986-3991.
  • 4M. Tillerson. Coordination and control of multiple spacecraft using convex optimization techniques. Department of Aero- nautics and Astronautics, Massachusetts Institue of Technology, 2002.
  • 5Overview of the DART mishap investigation results. NASA Pub- lic Release, 2006.
  • 6T. Corazzini, A. Robertson, J. C. Adams, et al. GPS sensing for spacecraft formation flying. Proc. oflON-GPS Conference, 1997.
  • 7K. K. Gunnam, D. C. Hughes, J. L. Junkins, et al. A vision- based DSP embedded navigation sensor. IEEE Sensors Journal, 2002, 2(5): 428-442.
  • 8S. G. Kim, J. L. Crassidis, Y. Cheng, et al. Kalman filtering for relative spacecraft attitude and position estimation. Journal of Guidance, Control, and Dynamics, 2007, 30(1): 133-143.
  • 9N. A. Carlson. Federated filter for fault-tolerant integrated nav- igation systems. Proc. of lEEE Position, Location and Naviga- tion Symposium, 1988: 110-119.
  • 10Q. Xia, M. Rao, Y. Ying, et al. Adaptive fading Kalman filter with an application. Automatica, 1994, 30(8): 1333-1338.

同被引文献30

  • 1吴美平,逯亮清.北斗双星系统车辆定向技术[J].国防科技大学学报,2006,28(3):89-93. 被引量:6
  • 2解永春,张昊,石磊,孙承启.交会对接光学成像敏感器设计中的关键问题[J].航天控制,2006,24(5):35-39. 被引量:12
  • 3刘涛,解永春.基于GPS相对伪距差分的相对导航方法研究[J].中国空间科学技术,2007,27(1):1-8. 被引量:12
  • 4CI-IAO A, KANG Y S.Ahitude Integration of Radar Ahim- eter and GPS/INS for Automatic Takeoff and Landing of a UAV [ C ] // KINTEX, Gyeonggi-do, Korea . 1 lth Interna- tional Conference on Control, Automation and Systems, 2011 : 1 429-1 432.
  • 5HANS L,WANG J L. Quantization and Colored Noises Error Modeling for Inertial Sensors for GPS/INS Integration [ J ]. IEEE SENSORS JOURNAL, 2011, 11 (6) : 1 493-1 503.
  • 6GABRIELE G, PETER J G, TIM P G. Instantaneous Global Navigation Satellite System ( GNSS )-Based. Attitude Determination for Maritime Applications [ J ].Oce- anic Engineering, IEEE,2012,12 (99) : 1-15.
  • 7KIS L, LANTOS B.Aided Carrier Phase Differential GPS for Attitude Determination[C]//ASME, IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2011:778-783.
  • 8ANDREW R, ABDELHAMID T. On the Attitude Estimation of Accelerating Rigid-bodies Using GPS and IMU Measurements [ C ] //Orlando, FL, USA, 2011 50th IEEE Conference on Decision and Control,European Con- trol Conference (CDC-ECC),2011:8 088-8 093.
  • 9AXELRAD P,WARD L M.Spacecraft Attitude Estimation Using the Global Positioning System:Methodology andResult for RADCAL[ J] .Journal of Guidance ,and Dynam- ics,1996,19(6) :1 201-1 209.
  • 10NAQVI N A, Li Y J.The Quest for Optimal Spacecraft At- titude Determination Filtering Algorithm Using GNSS Phase Measurements : An Overview [ C ] //Japan, 2nd In- ternational Conference on Signal Processing Systems (IC- SPS) ,2010,V2:383-388.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部