期刊文献+

支持向量机在建立冠心病早期诊断模型中的应用 被引量:7

The Application of Support Vector Machine in Building the Early Diagnostic Model of Coronary Artery Disease
下载PDF
导出
摘要 目的探索支持向量机方法在建立冠心病早期诊断模型中的应用,为冠心病危险因素在早期诊断中的合理应用提供理论依据。方法首先应用logistic回归分析方法筛选冠心病危险因素,将有统计学意义的危险因素与24h动态心电图检查结果共同构建支持向量机模型,并应用测试数据集对各模型的诊断能力进行评价。结果 24h动态心电图检查结果与危险因素共同构建的支持向量机模型较单独应用24h动态心电图诊断有更好的诊断准确率和灵敏度,特异度较低。对应用不同变量构建的模型进行比较,应用24h动态心电图,结合年龄、性别、糖尿病、高血压构建的模型诊断效果较好,准确率为70.35%,灵敏度为90.27%,特异度为34.76%。结论应用支持向量机可以建立合适的冠心病早期诊断模型;结合主要危险因素进行冠心病的早期诊断可以提高诊断准确率。 Objective To explore the application of the Support Vector Machine(SVM) in the diagnosis of Coronary Artery Disease (CAD);And to provide the theory basis for the usage of risk factors in the early diagnosis.Methods Backward logistic regression was used to choose significant variables.We used significant variables and 24-hour holter to build the SVM.Then different models were evaluated with the same test dataset.Results The accuracy and sensitivity of the SVM which was built with risk factors were higher than 24-hour holter to diagnose CHD,and the specificity was lower.After contrasting the diagnostic capabilities among different SVM models,we found that the model built with 24-hour holter,combined with age,sex,diabetes,hypertension was better.The accuracy was 70.35%,the sensitivity was 90.27% and the specificity was 34.76%.Conclusion SVM could be used as the early diagnostic meth-od for CHD,and the accuracy of early diagnosis would be higher in consideration of major risk factors.
出处 《中国卫生统计》 CSCD 北大核心 2011年第2期122-125,共4页 Chinese Journal of Health Statistics
基金 "十一五"国家科技支撑计划项目(2006BAI01A02)
关键词 支持向量机 冠心病 诊断模型 24H动态心电图 Support vector machine Coronary artery disease Diagnostic model 24-hour holter
  • 相关文献

参考文献10

  • 1The global burden of disease:2004 update.http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html.
  • 2Loong CY,Anagnostopoulos C.Diagnosis of coronary artery disease by radionuclide myocardial perfusion imaging.Heart,2004,90 Suppl 5:v2-v9.
  • 3Miller JM,Rochitte CE,Dewey M,et al.Diagnostic performance of coronary angiography by 64-row CT.N Engl J Med,2008,359(22):2324-2336.
  • 4Hamon M,Biondi-Zoccai GG,Malagutti P,et al.Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography:a meta-analysis.J Am Coll Cardiol,2006,48(9):1896-1910.
  • 5Gibbons RJ,Abrams J,Chatterjee K,et al.ACC/AHA 2002 guideline update for the management of patients with chronic stable angina-summary article:a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines(Committee on the Management of Patients With Chronic Stable Angina).J Am Coll Cardiol,2003,41(1):159-168.
  • 6Chang C,Lin C.LIBSVM-A Library for Support Vector Machines.http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
  • 7李磊,黄水平.支持向量机原理及其在医学分类中的应用[J].中国卫生统计,2009,26(1):22-25. 被引量:27
  • 8武振宇,李康.支持向量机在基因表达数据分类中的应用研究[J].中国卫生统计,2007,24(1):8-11. 被引量:7
  • 9孔灵芝,胡盛兽.中国心血管病报告.北京:中国大百科全书出版社,2006,21-21.
  • 10解丹蕊,韩建新,薛惠锋,杜喆.非均衡数据的支持向量机新方法[J].计算机应用研究,2009,26(5):1654-1655. 被引量:1

二级参考文献16

  • 1范昕炜,杜树新,吴铁军.去噪声的加权SVM分类方法[J].电路与系统学报,2004,9(4):97-102. 被引量:3
  • 2张琨,曹宏鑫,严悍,刘凤玉.支持向量机在网络异常入侵检测中的应用[J].计算机应用研究,2006,23(5):98-100. 被引量:9
  • 3吴骋,王志勇,贺佳.SVMs在基因表达谱数据分析中的应用[J].中国卫生统计,2006,23(1):79-82. 被引量:2
  • 4燕孝飞,葛洪伟,颜七笙.RBF核SVM及其应用研究[J].计算机工程与设计,2006,27(11):1996-1997. 被引量:16
  • 5Vapnik V. The nature of statistical learning theory. New York: Springer- Verlag, 1995.
  • 6Mehmed Kantardzic.数据挖掘概念、模型、方法和算法.闪四清等译.北京:清华大学出版社,2003,120-143.
  • 7VAPNIK V. The nature of statistical learning theory [ M ]. New York: Springer, 1995.
  • 8JAPKOWICZ N, STEPHEN S. The class imbalance problem: a systematic study [ J ]. Intelligent Data Analysis, 2002,6 ( 5 ) : 429- 449.
  • 9CHAWLA N V, BOWYER K W, HALL L O,et al. Smote: synthetic minority over-sampling technique [ J ]. Journal of Artificial Intelligence Research, 2002,16 ( 3 ) :321- 357.
  • 10REHAN A, STEPHEN K, NATHALIE J. Applying support vector machines to imbalanced datasets [ C ]//Proc of the 15th European Conference on Machines Learning, LNAI3201. [ S. l. ] : Springer-Verlag, 2004:39-50.

共引文献32

同被引文献69

引证文献7

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部