摘要
图的拉普拉斯矩阵是指其度对角矩阵和其邻接矩阵之差.设S(G)是图G的前两大的拉普拉斯特征值之和,在所有n阶的连通图中,S(G)的最小值一旦确定,相应的极图也被唯一地刻画.
The Laplacian matrix of a graph is defined to be the difference between the diagonal matrix of vertex degrees and its adjacency matrix.Let S(G) be the sum of the largest two Laplacian eigenvalues of a graph G.Among all connected graphs with n vertices,the unique extremal graph which attains the minimal value of S(G) is determined.
出处
《淮北师范大学学报(自然科学版)》
CAS
2011年第1期20-23,共4页
Journal of Huaibei Normal University:Natural Sciences
关键词
图
拉普拉斯矩阵
特征值
graph
Laplacian matrix
eigenvalue