期刊文献+

基于MCA的乳腺X线图像中肿块的自适应检测方法 被引量:3

An Adaptive Mass Detection Method on Mammography Based on MCA
下载PDF
导出
摘要 针对肿块通常大小和形状各异,并且边缘模糊的特点,提出了一种基于形态学成分分析(MCA)和直方图自适应阈值搜索的肿块检测方法.首先通过引入MCA方法有效地抑制了血管和纤维对检测的影响,在此基础上设计了一种基于直方图的自适应阈值搜索策略,根据肿瘤的生长特性,通过自适应阈值和多灰度同心层方法,有效地检测乳腺X线图像中的病变区域.通过对真实乳腺X线图像的测试实验,其结果表明,所提出的方法能够检测出不同类型的肿块区域,并且假阳性区域的数量在可接受的范围内,能够有效地辅助医生进行诊断. For capturing various shapes and blurry margins of tumors,a new mass detection method based on Morphological Component Analysis(MCA) and adaptive histogram threshold searching is proposed in this paper.Firstly,MCA method is introduced to restrain the influence of blood vessels and fibrous structures in mammograms.Then,an adaptive threshold searching method is designed according to the histograms of breast region.Finally,following the Gaussian-like growing feature of masses,the suspicious regions are effectively detected according to the adaptive thresholds and multi-intensity concentric layer methods.The experimental results on mammograms illustrate that the proposed method could effectively detect different types of masses with acceptable false positives,and could be a useful tool for assisting doctors.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第3期525-530,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60771068No.60702061No.60832005) 教育部长江学者和创新团队支持计划(No.IRT0645) 深圳大学ATR国防科技重点实验室开放基金
关键词 计算机辅助检测 肿块检测 形态学成分分析 自适应阈值搜索 灰度同心层 computer-aided detection mass detection morphological component analysis adaptive threshold searching multiple intensity layers
  • 相关文献

参考文献10

  • 1万柏坤,王瑞平,朱欣,綦宏志.SVM算法及其在乳腺X片微钙化点自动检测中的应用[J].电子学报,2004,32(4):587-590. 被引量:21
  • 2H Kobatake,M Murakami, H Takeo, et al. Computerized deteclion of malignant tumors on digital mammograms [ J ]. IEEE. Tram Med Imaging, 1999,18(5) :369 -378.
  • 3H Georgiou, M Mavroforakis, N Dimillopoulos, et al. Multi-scale morphological features for the characterization of mam-mographic masses using statistical classification schemes [ J]. Arfif Intell Meal,2007,41 (1) :39 -55.
  • 4D Guliato, R M Rangayyan, J D Carvalho, et al. Polygonal modeling of contours of breast tumors with the preservation of spicules [ J]. IEEE Trans Biomed Eng,2008,55( 1 ) : 14 -20.
  • 5Ying WANG,Xinbo GAO.Mass detection algorithm based on support vector machine and relevance feedback[J].Frontiers of Electrical and Electronic Engineering in China,2008,3(3):267-273. 被引量:1
  • 6N H Eltonsy, G D Tourassi, A S Elmaghraby. A concentric morphology model for the detection of masses in mamrnogra-phy [ J]. IEEE. Trans Med Imaging, 2007,26(6) :880 -889.
  • 7J L Starck,M Elad,D L Donoho. Redundant multiscale trans-forms and their application for morphological component analy-sis [J] .Adv Imag Elect Phys,2004,132:287 -348.
  • 8J L Starck,M Elad,D L Donoho. Image decomposition via the combination of sparse representations and a variational approach [J].IEEE Tram Image Process,2(DS, 14(10) : 1570 -1582.
  • 9刘海华,陈心浩,高智勇,谢长生.基于形态学操作和模糊聚类技术的超声图像分割[J].电子学报,2007,35(7):1306-1312. 被引量:7
  • 10University of South Florida. Digital Database for Screening Mammography (DDSM). [ DB/OL] http://marathon, csee. usf. edu/Mammography/Database, html, 2004.

二级参考文献34

  • 1Vladimir N Vapnik.An overview of statistical learning theory[J].IEEE Trans.On Neural Network,1999,10(5):988-999.
  • 2Christopher J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2:121-167.
  • 3Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995:1-15.
  • 4S R Gunn.Support Vector Machines for Classification and Regression[R].Technical Report,Image Speech and Intelligent Systems Research Group,University of Southampton,1997.
  • 5M O Stitson,J A E Weston,A Gammerman,et al.Theory of Support Vector Machines.Technical Report[R],CSD-TR-96-17.Department of Computer Science Egham,Surrey TW20 0EX,England,Royal Holloway University of London,December 31,1996.
  • 6V Vapnik,A Y Chervoknenkis.On the uniform convergence of relative frequencies events to their probabilities[J].Theory of Probable and Its Application,1971,16(2):263-280.
  • 7J S Lee,et al.Digital image enhancement and noise filtering by using local statistics[J].IEEE Transactions on Pattern Anal and Machine Intell,1980,PAM1-2(2):165-168.
  • 8V S Frost,et al.A model for radar images and its application to adaptive digital filtering of multiplicative noise[J].IEEE Transactions on Pattern Anal Machine Intell,1982,4(2):157-166.
  • 9A Lopes,et al.Adaptive speckle filters and scene heterogeneity[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(6):992-1000.
  • 10R N Czerwinski,D Jones,W O'Brien.Line and boundary detection in speckle images[J].IEEE Transactions Image Processing and Its Applications,1998,7(12):1700-1714.

共引文献26

同被引文献33

  • 1邱建峰,于兹喜,李月卿,王昌元,徐惠.数字乳腺X线照片CAD中可疑密度区域的自动分割(英文)[J].泰山医学院学报,2005,26(2):136-139. 被引量:4
  • 2American Ca.ncer Society. Breast cancer facts and figures 2009-2010[R]. Atlanta: American Cancer Society, 2010.
  • 3Cancer Research UK. Breast cancer mortality statistics[OL]. Available: http://info.cancerresearchuk.org/cancerstats/ types/breast/mortality /index.htm, 2010.
  • 4World Health Organization Breast caocer Incldenee and morta1ity worldwide in 2008 8UJDIII&I'Y[OLIo Available: http://globocan.iarc.fr /factaheets/cancers{breut.8Ip, 2008.
  • 5National Cancer IDstitute. EItimated new caocer caeea and deaths for 2012 all races, by II8X[OLIo Available: http://fIMIr. cancer.gov/ear/1975_2009_pope09/resulta_single/88Ct_ 01_ table.01.pdf, 2012.
  • 6National Cancer IDstitute. SEERIItat fact sheets: breast (OL). Available: http://www.caocer.gov/cancert.Dpia/typtEJ5/ breast, 2008.
  • 7Lewis C. FDA Beta higher standards for mammography[J]. FDA Consumer, 1999,245(1): 13-17.
  • 8Eltonsy N H, TOUf888i G D, and Elmaghraby A S. A concentric mammography model for the detection of m888e8 in mammography[J]. IEEE Transactions on Medical Imaging, 2007, 26(6): 880-889.
  • 9Xu S Z and Pei C D. Hierarchical matching for automatic detection of masses in mammograms[C). International Conference on Electrical and Control Engineering (ICECE), Yichang 2011: 4523-4526.
  • 10Gao X B, Wang Y, LiJ, et aL On combining morphological component analysis and concentric morphology model for mammographic m888 detection[J]. IEEE Transactions on In/M'fIUJtiIm TeehnoIogp in Biomedicine, 2010, 2(14): 266-273.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部