期刊文献+

基于Contourlet的图像感知质量评价 被引量:5

Image Perceptual Quality Assessment Using Contourlet Transform
下载PDF
导出
摘要 图像感知质量评价是图像信息工程的基础技术之一.结合人类视觉系统(HVS)的感知特性,在Con-tourlet变换域建立了一个新的可计算JND门限模型,该模型综合考虑了HVS的空间频率敏感性、方向敏感性、对比度掩盖与邻域掩盖特性.由于邻域掩盖模型的引入,能够有效鉴别图像中平滑、边缘与纹理结构区域对失真的不同掩盖强度,实现更加精确的掩盖阈值计算.借助于建立的JND模型,定义每个系数的感知误差,进而建立了感知质量评价标准HVSNR.实验结果表明该定量评价标准能够有效匹配人类的视觉感觉. Image perceptual quality assessment is a key problem in image processing engineering.According to the perceptual characters of Human Visual System(HVS),a Just Noticeable Distortion(JND) threshold model is constructed using contourlet transform,which can well qualify spatial frequency sensitivity,orientation sensitivity,contrast masking and neighborhood masking effects of HVS.As a result of taking account of neighborhood masking additionally,this JND model can distinguish the different masking intensity of smoothness,edge and texture domain,and implement more accurate JND threshold.Based on our JND threshold model,the perceptual error between contourlet coefficients is defined,and then a quantitative perceptual quality metric HVSNR is proposed.Experiments demonstrate that our metric can provide quality evaluation well correlated with those given by human observers.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第3期649-655,共7页 Acta Electronica Sinica
基金 国家高技术研究发展计划(No.2007AA12Z124) 国家自然科学基金(No.61071146 No.60802039 No.60672074) 高等学校博士点专项基金(No.200802880018) 江苏省自然科学基金(No.SBK201022367) 江苏省研究生创新基金 南京理工大学研究基金(No.2010ZDJH07)
关键词 质量评价 CONTOURLET HVS JND 邻域掩盖 quality assessment contourlet HVS JND neighborhood masking
  • 相关文献

参考文献15

  • 1Daly S. The Visible Differences Predictor: An Algorithm for the Assessment of Image Fidelity [ M ]. Cambridge: MIT Press, 1993.179 -206.
  • 2Gao X,Lu W, Tao D,Li X. Image quality assessment based on multiscale geometric analysis [ J]. IEEE.Transactions on Image Processing, 2009,18(7) : 1409 -1423.
  • 3Li X,Tao D,Gao X,Lu W.A new natural image quality eval-uation melric [ J]. Signal Processing, 2009,89(4) :548 -555.
  • 4Chandler D, M, Hernami S, S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[ J]. IEEE .Transactions on Image Processing, 2007,16 (9) : 2284 -2298.
  • 5杨春玲,高文瑞.基于结构相似的小波域图像质量评价方法的研究[J].电子学报,2009,37(4):845-849. 被引量:33
  • 6Zeng W, Daly S, Lei S. An overview of the visual optimization tools in JPEG2000[J]. Signal Processing:Image Communica-tion, 2002,17(1) :85 -104.
  • 7Ninassi A,Le Meur O,Le Callet P,Barba D. Which semi-local visual masking model for wavelet based image quality melric [ A]. IEEE International Conference on Image Processing[ C ]. San Diego: IEEE Press,2008.1180-1183.
  • 8Do M N, Vetterli M. The contourlet transform:an efficient di-rectional mulfiresolution image representation [ J ]. IEEE. Tram Image Processing,2005,14(12) :2091 -2106.
  • 9Peli E. ConWast in complex images[ J]. Journal of the Optical Society of America A, 1990,7(10) :2032 -2040.
  • 10Ran X, Farvardin N. A perceptually motivated three-compo-nent image model-Part I: Description of the model[ J]. IEEF Trans linage Processing, 1995,4(4) :401 -415.

二级参考文献10

  • 1B Girod. What's wrong with mean-square error[ A]. Digital Images and Human Vision [ C]. Cambridge, MIT Press, MA, 1993.207 - 220.
  • 2Saklison D. On the role of the observer and a distortion measure image transmission[J]. IEEE Transactions on Communication, 1977,25(11) : 1251 - 1267.
  • 3A B Watson. Digital Images and Human Vision[ M ]. Cambridge,Massachusetts: The MIT Press, 1993.179 - 206.
  • 4J Lubin. Vision Models for Target Detection and Recognition [ M]. Singapore: World Scientific Publishing, 1995.245 - 283.
  • 5Sarnoff Corporation, JNDmetrix Technology[ OL ]. Evaluation Version available: http://www. samoff.com/products-services/video- vision/jndmetrix/downloads. asp, 2003.
  • 6VQEG.Final report from the video quality experts group on the validation of objective models of video quality assessment[EB/ OL]. ( 2000203205 ). http://www. vqeg. org.
  • 7Zhou Wang,Conrad Bovik. Image quality assessment:from error visibility to structural similarity [ J ]. IEEE Transactions on Image Processing, 2004,13(4) : 600 - 612.
  • 8Zhou Wang, Alan C. Bovik, Ligang Lu. Why is image quality assessment so difficult? [ A] .Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing[ C]. IEEE. Press,2002,Vol 4,Ⅳ3313- Ⅳ3316.
  • 9Laboratory for Image & Video Engineering, University of Texas at Austin, Live image quality assess database release2[ OL]. http://live. ece. utexas. edu/research/quality, 2005.
  • 10杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62

共引文献32

同被引文献98

  • 1王修晖,华炜,鲍虎军.多投影显示墙的全局颜色校正[J].计算机辅助设计与图形学学报,2007,19(1):96-101. 被引量:18
  • 2王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 3杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 4黄小乔,石俊生,杨健,姚军财.基于色差的均方误差与峰值信噪比评价彩色图像质量研究[J].光子学报,2007,36(B06):295-298. 被引量:24
  • 5WANG ZHOU, WU GUIXING, SHEIKH H R, et al. Quality-aware images[J].IEEE Transactions on Image Processing, 2006, 15(6):1680-1689.
  • 6WANG ZHOU, BOVIK A C, LU LIGANG. Why is image quality assessment so difficult?[C]// IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2002,4, 3313-3316.
  • 7NILL N B, BOUZAS B H. Objective image quality measure derived from digital image power spectra[J].IEEE Signal Processing Letters, 2002,9(3): 388-392.
  • 8WANG ZHOU, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004,13(4): 600-612.
  • 9MORRONE M C, ROSS J, BURR D C, et al. Mach bands are phase dependent[J].Nature, 1986, 324(6049): 250-253.
  • 10MORRONE M C, OWENS R A. Feature detection from local energy[J].Pattern Recognition Letters, 1987, 6(5): 303-313.

引证文献5

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部