期刊文献+

基于波段子集特征提取的最小二乘支持向量机高光谱图像分类技术 被引量:3

Classification Technique for Hyperspectral Image Based on Subspace of Bands Feature Extraction and LS-SVM
下载PDF
导出
摘要 针对高光谱图像分类,文章提出一种基于波段子集最大噪声分量特征提取的最小二乘支持向量机的高光谱图像分类算法。利用高光谱图像的谱间相关性将原始光谱波段划分为若干个波段子集,并在各个子集上采用最大噪声分量方法进行特征提取,将提取的特征合成为分类的组合特征矢量,避免了高光谱图像较强的波段相关性,减少了谱间冗余。并且采用了最小二乘支持向量机,用等式约束取代了支持向量机中的不等式约束,降低了运算量,提高了学习效率。该方法利用特征提取优化了光谱信息,降低了谱间噪声,提高了分类器的性能。实验结果证明了本文算法的优越性。 The present paper proposes a novel hyperspectral image classification algorithm based on LS-SVM(least squares support vector machine).The LS-SVM uses the features extracted from subspace of bands(SOB).The maximum noise fraction(MNF) method is adopted as the feature extraction method.The spectral correlations of the hyperspectral image are used in order to divide the feature space into several SOBs.Then the MNF is used to extract characteristic features of the SOBs.The extracted features are combined into the feature vector for classification.So the strong bands correlation is avoided and the spectral redundancies are reduced.The LS-SVM classifier is adopted,which replaces inequality constraints in SVM by equality constraints.So the computation consumption is reduced and the learning performance is improved.The proposed method optimizes spectral information by feature extraction and reduces the spectral noise.The classifier performance is improved.Experimental results show the superiorities of the proposed algorithm.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第5期1314-1317,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(40901216) 国防科技大学博士研究生创新基金项目(B100402)资助
关键词 波段子集 最大噪声分量 最小二乘 特征提取 Subspace of bands Maximum noise fraction Least squares Feature extraction
  • 相关文献

参考文献15

  • 1Xin Qin,Nian Yongjian,Li Xiu,Wan Jianwei,Su Linghua.DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGERY BASED ON FASTICA[J].Journal of Electronics(China),2009,26(6):831-835. 被引量:4
  • 2J.A.K. Suykens,J. Vandewalle.Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters . 1999 (3)
  • 3Guo B,,Gunn S R,Damper R I,et al. IEEE Transactions on Image Processing . 2008
  • 4Chen J,Wang C,Wang R. IEEE Trans.Geosci.Remote Sens . 2009
  • 5Chen J,,Wang C,Wang R. Neurocomputing . 2009
  • 6Plaza A,Benediktsson J A,Boardman J W,et al. Remote Sensing of Environment . 2009
  • 7Barat M,Hamid A-M,Mohammad J V Z,et al. IEEE Trans.Geosci.Remote Sens . 2009
  • 8ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C/ .
  • 9Tarabalka Y,Chanussot J,Benediktsson J A. Pattern Recognition . 2010
  • 10Vladimir N Vapnik.Statistical Learning Theory. . 1998

二级参考文献11

  • 1X. R. Geng.Research on target detection and clas- sification of hyperspectral remotesensing[]..2005
  • 2Q. Du,,I. Kopriva,,H. Szu.Classifying hyper- spectral remote sensing imagery with independent component analysis[].Proceedings of SPIE the International Society for Optical Engineering.2005
  • 3J. M. P. Nascimento,J. M. B. Dias.Does inde- pendent component analysis play a role in unmixing hyperspectral data[].IEEE Transactions on Geo- science and Remote Sensing.2006
  • 4Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[].Neural Computation.1997
  • 5Green AA,Berman M,Switzer P,et al.A transformation for ordering multispectral data in terms of image quality with implications for noise removal[].IEEE Transactions on Geoscience and Remote Sensing.1988
  • 6Barbara Penna,Tammam Tillo,Enrico Magli,Gabriella Olmo.Transform coding techniques for lossy hyperspectral data compression[].IEEE Transactions on Geoscience and Remote Sensing.2007
  • 7Barbara Penna,Tammam Tillo,Enrico Magli,Gabriella Olmo.Hyperspectral - 110 -image compression employing a model of anomalous pixels[].IEEE Geoscience and Remote Sensing Letters.2007
  • 8DU Q,FOWLER J E.Hyperspectral image compression using JPEG2000 and principle component analysis[].IEEE Geoscience and Remote Sensing Letters.2007
  • 9RAMAKRISHNA B,WANG J,CHEIN I C.Spectral/spatial hyperspectral image compression in conjunction withvirtual dimensionality[].Proceedings of SPIE the International Society for Optical Engineering.2005
  • 10WANG J,CHANG CHEIN-I.Independent component a-nalysis-based dimensionality reduction with applications in hyperspectral image analysis[].IEEE Transactions on Geoscience and Remote and Remote Sensing.2006

共引文献3

同被引文献46

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部