期刊文献+

一种全局最优的非匀质图像分割算法 被引量:5

Non-homogenous image segmentation with global optimization
下载PDF
导出
摘要 为了解决传统几何活动轮廓模型不能自适应地分割非匀质图像的问题,提出了一种全局优化的非匀质图像分割算法.首先,利用图像经过高斯滤波器滤波后的梯度信息定义了一个新的图像分割能量函数.然后,利用水平集方法扩展该能量函数的定义域,以使该能量函数具有全局最优解.为避免水平集函数的重新初始化过程,在能量函数中引入了一个水平集函数约束项.最后,通过最小化该能量函数,建立水平集函数演化的偏微分方程.对水平集演化方程数值求解,实现对非匀质图像的分割.实验结果表明,该算法不但能自适应地确定曲线演化方向,而且能有效地分割非匀质图像. In order to solve the problem that the traditional geometric active contour model can not adaptively segment a non-homogenous image,a global optimization non-homogenous image segmentation algorithm is proposed.Firstly,a new energy function is defined by importing gradient information on the inhomogeneous image which is filtered by the Gaussian filter.Then,the domain of the energy function is extended by the level set method.Thus,the energy function has the solution of global optimization.We introduce a level set function control term for avoiding the re-initialization procedure of the level set function.Finally,a partial difference equation of the level set function evolvement is derived by minimizing the energy function.The non-homogenous image segmentation is implemented by the numerical solution of the partial difference equation.Experimental results show that the proposed algorithm not only can automatically determine the evolvement orientation of the active contour cure,but also can effectively segment non-homogenous images.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第2期66-71,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(60672128)
关键词 图像分割 几何活动轮廓模型 全局梯度 水平集 image segmentation geometric active contour model global gradient level set
  • 相关文献

参考文献10

  • 1Mohamed B S, Amar M, Ismail B A. Effective Level Set Image Segmentation with a Kernel Induced Data Term[ J]. IEEE Trans on Image Processing, 2010, 19(1) : 220-231.
  • 2Olivier B, Denis F, Philippe T, et al. Variational B-Spline Level-Set: a Linear Filtering Approach for Fast Deformable Model Evolution[ J]. IEEE Trans on Image Processing, 2009, 18(6) : 1179-1191.
  • 3Xie X H. Active Contouring Based on Gradient Vector Interaction and Constrained Level Set Diffusion[ J]. IEEE Trans on hnage Processing, 2010, 19(1) : 154-164.
  • 4汪凯斌,俞卞章,王琦,奚玮.无须反复初始化的活动围道纹理分割方法[J].西安电子科技大学学报,2008,35(3):542-545. 被引量:4
  • 5Malladi R, Sethian J, Vemuri B. Shape Modeling with Front Propagation: a Level Set Approach[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(2):158-175.
  • 6Caselles V, Carte F, Coll T et al. A Geometric Model for Active Contours in Image Processing [ J]. Numerische Mathematik, 1993, 66(1) : 1-31.
  • 7王斌,高新波.基于水平集接力的图像自动分割方法[J].软件学报,2009,20(5):1185-1193. 被引量:16
  • 8Chan T F, Vese L A. Active Contours without Edges[ J]. IEEE Trans on Image Processing, 2001, 10(2) : 266-277.
  • 9Lankton S, Tannenbaum A. Localizing Region-Based Active Contours [ J]. IEEE Trans on Image Processing, 2008, 17( 11): 2029 -2039.
  • 10Mikic I, Krucinski S, Thomas J D. Segmentation and Tracking in Echocardiographic Sequences: Active Contours Guided by Optical Flow Estimates[ J]. IEEE Trans on Medical Imaging, 1998, 17(2):274-284.

二级参考文献25

  • 1Zhang YJ. Advances in Image and Video Segmentation. Hershey: IRM Press, 2006. 1-15.
  • 2Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int'l Journal of Computer Vision, 1988,1(4):321-331.
  • 3Xu CY, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing, 1998,7(3):359-369.
  • 4Adalsteinsson D, Sethian JA. A fast level set method for propagating interfaces. Computational Physics, 1995,118(2):269-277.
  • 5Chan TF, Vese LA. Active contours without edges. IEEE Trans. on Image Processing, 2001,10(2):266-277.
  • 6Li CM, Xu CY, Gui CF, Fox MD. Level set evolution without re-initialization: A new variational formulation. In: Schmid C, Soatto S, Tomasi C, eds. Proc. of the 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society Press, 2005.430-436.
  • 7Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(2): 158-175.
  • 8Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 1988,79( 1): 12-49.
  • 9Osher S, Fedkiw R. Level Set Methods and Dynamics Implicit Surfaces. New York: Springer-Verlag, 2003.1-36.
  • 10Peng DP, Merriman B, Osher S, Zhao HK, Kang M. A PDE based fast local level set method. Journal of Computational Physics, 1999,155(2):410-438.

共引文献18

同被引文献51

  • 1Mitiche A, Ayed I B. Variational and Level Set Methods in Image Segmentation[M]. Berlin: Springer-Verlag, 2010: 33-178.
  • 2Zhang Kaibua, Zbang Lei, Song Huihui. Active Contour with Selective Local or Global Segmentation: a New Formulation and Level Set Method[J]. IEEE Trans on Image and Vision Computing, 2010, 28(5) : 668-676.
  • 3Wang Xiaofei, Huang Deshuang, Xu Huan. An Efficient Local Chan-Vese Model For Image Segmentation[J]. Pattern Recognition, 2010(43): 603-618.
  • 4Grady L. The Piecewise Smooth Mumford-Shah Functional on an Arbitrary Graph [J]. IEEE Trans on Image Processing, 2009,18(11): 1-16.
  • 5Li Chunming, Xu Chenyang. Distance Regularized Level Set Evolution and Its Application to Image Segmentation[J]. IEEE Trans on Image Processing, 2010, 19(12) : 3243-3254.
  • 6Mille J. Narrow Band Region-based Active Contours and Surfaces for 2D and 3D Segmentation[J]. Computer Vision and Image Understanding, 2009, 113(9): 946-965.
  • 7Chen Gang, Gu Lixu. An Improved Level Set for Liver Segmentation and Perfusion Analysis in MRIs[J]. IEEE Trans on Information Technology in Biomedicine, 2009,13(1): 94-103.
  • 8Shi Yonggang, Karl W C. A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution[J]. IEEE Trans on Image Processing, 2008, 17(5) : 645-656.
  • 9Shih F Y. Image Processing and Pattern Recognition:Fundamentals and Techniques[M]. Hoboken: John Wiley@Sons, Inc. 2010: 1-350.
  • 10Ning Ji{eng, Zhang Lei, Zhang D. Interactive Image Segmentation by Maximal Similarity Based Region Merging[J]. Pattern Recognition, 2010(43): 445-456.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部