期刊文献+

数字图书馆中基于内容的图像检索研究 被引量:2

下载PDF
导出
摘要 针对数字图书馆中的图像检索问题,提出了一种基于SVM的相关反馈算法。比较了基于SVM的相关反馈方法和MARS方法的检索性能,在一定程度上解决了基于内容的图像检索中由于底层特征和上层理解之间的差异而造成的"语义鸿沟"问题,仿真实验表明这种算法能提高数字图书馆中图像检索的效率和查全率。
出处 《情报探索》 2011年第4期90-92,共3页 Information Research
基金 聊城大学科研基金资助项目"求解PFS调度问题的混合微粒群算法研究"(项目编号:X09031)的成果
  • 相关文献

参考文献9

  • 1袁方,刘明.数字图书馆中的基于内容图像检索技术[J].情报杂志,2001,20(1):45-46. 被引量:11
  • 2Zhang L,Lin F,Zhang B. Support Vector machine for image retrieval.Proceedings of IEEE Intermafional Conference on Image Processing [ J ]. Thessaliniki, Greece, 2001 : 34-37.
  • 3张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273
  • 4Rui Y,Huang T S,Mehrotra S,et al. Relevance feedback:A Power tool for interactive content-based image re trieval[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998,8 (5) : 644-655.
  • 5Rui Y,Huang T S,Mehrotra S,et al. A relevance feedback architecture for content-based multimedia information retrieval systems [C]. In Proceedings of IEEE Workshop on Content-Based Access of Image and Video Libraries,Puerto Ri co, 1997: 82-90.
  • 6Swain M J,Ballard D H. Color indexing [J]. International Journal of Computer Vision, 1991,7( 1 ) : 11-32.
  • 7John R Smith,Shih-Fu Chang. Tools and Techniques for color image retrieval [J]. Prec. Storage and Retrieval for Image and Video Databases, 1996,2670:426-431.
  • 8Rafael C Gonzalez.数字图形处理[M].北京:电子工业出版社.2007:343-347.
  • 9Manjunath B S,Ma W Y. Texture Features for Browsing and Retrieval of Image Data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18 (8) : 837- 842.

二级参考文献10

共引文献2282

同被引文献24

  • 1王伟平.基于内容的图像检索技术研究进展及其在数字图书馆中的应用[J].信息技术,2009,53(9):116-120.
  • 2Hossein Nezamabadi-pour,Saeid Saryazdi.Object-based image indexing and rRetrieval in DCT domain using clustering techniques[C].Proceedings of workd academy of science engineering and technology,2005,3:195-201.
  • 3Barskar R, Ahmed G F. CBIR using fuzzy edge detection mask [A]. Proceedings of the 2011 International Conference on Commu nication, Computing ~ Security [C]. ACM, 2011= 277- 280.
  • 4Su J H, Huang W J, Yu P S, et al. Efficient relevance feedback for content--based image retrieval by mining user navigation patterns [J]. Knowledge and Data Engineering, IEEE Transactions on, 2011, 23 (3): 360-372.
  • 5Bian W, Tao D. Biased discriminant Euclidean embedding for con tent--based image retrieval [J]. Image Processing, IEEE Transac- tions on, 2010, 19 (2):545-554.
  • 6Cho H C, Hadjiiski L, Sahiner B, et al. Similarity evaluation in a content--based image retrieval (CBIR) CADx system for character- ization of breast masses on ultrasound images [J]. Medical physics, 2011, 38 (4): 1820-1831.
  • 7E1Alami M E. A novel image retrieval model based on the most rele- vant features [J]. Knowledge--Based Systems, 2011, 24 (1):23 -32.
  • 8Rashedi E, Nezamabadi-- pour H. Improving the precision of CBIR systems by feature selection using binary gravitational search algo- rithm I-A]. Artificial Intelligence and Signal Processing (AISP), 2012 16th CSI International Symposium on [C]. IEEE, 2012:039 - 042.
  • 9Agarwal S, Verma A K, Singh P. Content Based Image Retrieval using Discrete Wavelet Transform and Edge Histogram Descriptor [A]. Information Systems and Computer Networks (ISCON), 2013 International Conference on [C]. IEEE, 2013:19 - 23.
  • 10Rao P S, Vamsidhar E, Raju G V P, et al. An approach for CBIR system through multi layer neural network [J]. International Journal of Engineering Science and Technology, 2010, 2 (4) : 559 -563.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部