期刊文献+

基于逆向搜索的关联规则更新算法 被引量:2

Association Rules Updating Algorithm Based on Reverse Search
下载PDF
导出
摘要 对现有关联规则更新算法中的增量式更新算法进行分析,发现在决策者优先关注最大频繁项目集的情况下,该算法不能以较少的数据库遍历次数快速获取最大频繁项集。针对该算法的不足,提出一种基于逆向搜索的方式进行关联规则更新的算法。该算法生成新增项集的所有频繁项集,通过将其中最大频繁项集跟原项集中最大频繁项集进行拼接、修剪,从中获得更新后的最大频繁项集。实例结果表明,该算法既降低了关联规则更新过程中对数据库的遍历次数,又实现了优先获取最大频繁项目集。 This paper analyzes the existing association rules updating algorithm Incremental Updating Algorithm(IUA), finds out that when the decision makers give priority attention to the situation of maximum frequent iterasets, this algorithm can not lower the cost of the database traversal to quickly access to the largest number of frequent itemsets. For the lack of the algorithm, an algorithm which is based on reverse search approach to update association rules is presented. The updating algorithm based on reverse search generates all frequent itemsets of new itemsets. It splices the new largest frequent itemsets and original largest frequent itemsets for trimming, gets the updating maximal frequent itemsets. The algorithm not only reduces the traversal times in the process of association rules updating, but also realizes the priority access to the largest operation of frequent itemsets.
作者 陈煜 徐维祥
出处 《计算机工程》 CAS CSCD 北大核心 2011年第8期25-27,共3页 Computer Engineering
基金 国家科技支撑计划基金资助项目(2009BAG12A10) 北京市科委基金资助项目(Z090506006309011)
关键词 逆向搜索 关联规则 更新算法 增量式更新算法 最大频繁项目集 reverse search association rules updating algorithm Incremental Updating Algorithm(IUA) maximum frequent itemsets
  • 相关文献

参考文献5

二级参考文献17

  • 1卢景丽,徐章艳,刘美玲,区玉明.一种改进的负关联规则挖掘算法[J].广西师范大学学报(自然科学版),2004,22(2):41-46. 被引量:8
  • 2Agrawal R,Srikant R.Fast Algorithms for Mimng Association Rules[C]//Proceedings of VLDB'94.Santiago,Chile:[s.n.],1994:487-499.
  • 3Brin S,Montwani R,Silverstein C.Beyond Market Baskets:Generalizing Association Rules to Correlations[C]//Proc.of ACM SIGMOD'97.Tucson,Arizona USA:ACM Press,1997:265-276.
  • 4Shapiro P G,Fayyad U,Smith P.From Data Mining to Knowledge Discovery:An Overview Knowledge Discovery and Data Mining[M].Cambridge,MA,USA:MIT Press,1996:1-34.
  • 5[1]Agrawal R, Imielinski T,Swami A.Mining Association Rules Between Sets of Items in Large Databases[C]. SIGNOD, 1993: 207-216
  • 6[2]Agrawal R,Srikant R. Fast Algorithms for Mining Association Rules [C].VLDB-94,1994:487-499
  • 7Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[A]. Proceeding of the ACM SIGMOD International Conference on Management of Data [C]. 1993 (2) :207 - 216.
  • 8Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation[A]. (slides). Proc of 2000 ACM-SIGMOD Int Conf on management of data[C]. Dallas: TX, May, 2000. 1- 12.
  • 9Agrawal R, Srikant R. Mining sequential patterns[A]. Proc of the 11th International Conference on Data Engineering[C]. Taipei, Taiwan : 1995.3 - 14.
  • 10Han J, Pei J, Yin Y. Mining partial periodicity using frequent pattern tree [R]. Simon Fraser University Tech Rep: TR - 99 - 10, July 1999.

共引文献236

同被引文献28

  • 1李斌,马戈,孙志挥.项目集发生变化的关联规则增量式更新算法[J].计算机应用,2004,24(12):105-107. 被引量:1
  • 2陈俊杰,崔晓红.基于FP-Tree的频繁闭合项目集挖掘算法的研究[J].计算机工程与应用,2006,42(34):169-171. 被引量:3
  • 3Agrawal R,Srikant R.Fast algorithms for mining associationrules[C]//Proceedings of the 20th VLDB Conference.[s.l.]:[s.n.],1994:487-499.
  • 4Han J,Pei J,Yin Y.Mining frequent patterns without candi-date generation[C]//2000 ACM SIGMOD Intl ConferenceonManagement of Data.[s.l.]:[s.n.],2000:1-12.
  • 5El-Hajj M,Zaane O R.COFI-tree mining:a new approach topattern growth with reduced candidacy generation[C]//Workshop on Frequent Itemset Mining Implementations(FI-MI’03)in Conjunction with IEEE-ICDM.[s.l.]:[s.n.],2003.
  • 6El-Hajj M,Zaiane O R.Non recursive generation of frequentk-itemsets from frequent pattern tree representations[C]//Proceeding of 5th International Conference on Data Warehou-sing and Knowledge Discovery(DaWak’2003).[s.l.]:[s.n.],2003.
  • 7Cheung Y L,Fu A W.An FP-tree Approach for Mining N-most Interesting Itemsets[C]//Proceedings of the SPIE Con-ference on Data Mining.[s.l.]:[s.n.],2002.
  • 8Cheung Y L,Fu A W.Mining association rules without supportthreshold:with and without item constraints[J].IEEE Trans-actions on Knowledge and Data Engineering,2004,16(9):1052-1069.
  • 9Fu A W C,Kwong R W W,Tang J.Mining N-most InterestingItemsets[C]//Proceedings of International Symposium onMethodologies for Intelligent Systems(ISMIS).[s.l.]:[s.n.],2000.
  • 10钟晓桢.基于Apriori和IUA的改进算法[J].江汉大学学报(自然科学版),2007,35(3):59-63. 被引量:4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部