期刊文献+

半监督局部判别分析 被引量:4

Semi-Supervised Local Discriminant Analysis
下载PDF
导出
摘要 针对无监督学习及有监督学习算法的缺点,提出一种半监督局部判别分析的线性降维算法。数据在没有足够的训练样本时,局部结构比全局结构更重要。算法在每一个局部区域利用有标签数据推导出数据的局部判别结构,无标签数据和有标签数据推导出数据的内在几何结构。在ORL和Yale人脸数据库上的实验结果表明该算法是有效的。 Aiming at the disadvantage of unsupervised method and supervised method,a linear dimensionality reduction method called Semi-supervised Local Discriminant Analysis(SLDA) is proposed.When there is no sufficient training sample,local structure is generally more important than global structure.SLDA utilizes the labeled data points to infer the local discriminant structure,as well as the intrinsic geometrical structure inferred from both labeled and unlabeled data points at each local area.Experimental results on ORL and Yale face recognition demonstrate the effectiveness of the algorithm.
作者 姜伟 杨炳儒
出处 《计算机工程》 CAS CSCD 北大核心 2011年第8期153-154,157,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60675030)
关键词 判别结构 半监督 局部保持投影 局部判别分析 discriminant structure semi-supervised Local Preserving Projection(LPP) local discriminant analysis
  • 相关文献

参考文献5

  • 1Turk M, Pentland A. Eigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 2Sets D L, Weng Juyang. Using Discriminant Eigenfeatures for Image Retrieval[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836.
  • 3郭金玉,苑玮琦.基于二维Fisher线性判别的掌纹识别方法[J].计算机工程,2008,34(6):212-213. 被引量:15
  • 4Cai Deng, He Xiaofei, Zhou Kun, et al. Locality Sensitive Discriminant Analysis[C]//Proc. of International Joint Conference on Artificial Intelligence. Hyderabad, India: [s. n.], 2007.
  • 5Cai Deng, He Xiaofei, Han Jiawei. Semi-supervised Discriminant Analysis[C]//Proc. of IEEE international Conference on Computer Vision. Rio de Janeiro, Brazil: [s. n.], 2007.

二级参考文献7

  • 1吴介,裘正定.掌纹识别中的特征提取算法综述[J].北京电子科技学院学报,2005,13(2):86-92. 被引量:20
  • 2Kong Waikin, Zhang David, Li Wenxin. Palmprint Feature Extraction Using 2-D Gabor Filters[J]. Pattern Recogniton, 2003, 36(10): 2339-2347.
  • 3Wu Xiangqian, Zhang David, Wang Kuanquan. Fisherpalms Based Palmprint Recognition[J]. Pattern Recognition Letters, 2003, 24(15): 2829-2838.
  • 4Lu Guangrning, Zhang David, Wang Kuanquan. Palmprint Recognition Using Eigenpalms Features[J]. Pattern Recognition Letters, 2003, 24(9/10): 1463-1467.
  • 5Wei Jiang, .Tao Junwei, Wang Lili. A Novel Palmpfint Recognition Algorithm Based on PCA&FLD[C]//Proc. of Digital Telecommunications. Washington D. C., USA: IEEE Computer Society, 2006: 28-31.
  • 6Xiong Huilin, Swamy M N S, Ahmad M O. Two-dimensional FLD for Face Recognition[J]. Pattern Recognition, 2005, 38(9): 1121.
  • 7PolyU Palmprint Database[Z]. (2003-03-02). http://www4.comp. polyu.edu.hk/-biometrics/.

共引文献14

同被引文献28

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(5786): 504-507.
  • 3Jolliffe I T. Principal Component Analysis[M]. New York, USA: Springer, 1986.
  • 4Fisher R A. The Use of Multiple Measurements in Taxonomic Problems[J]. Annals of Eugenics, 1936, 7(2): 179-188.
  • 5He Xiaofei, Niyogi P. Locality Preserving Projections[C]//Proc. of NIPS’03. Vancouver, Canada: [s. n.], 2003: 585-591.
  • 6Belhumeur P N,Hespanha J P,Kriegam D J.Eigenfaces vs.fisherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 7He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face recognition using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
  • 8Zhang H,Sun S,Jing Z,et al.Local structure based supervised feature extraction[J].Pattern Recognition,2006,39(8):1546-1550.
  • 9Cai Deng,He Xiaofei,Han Jiawei.Semi-supervised discriminant analysis[C]∥Proc of IEEE International Conference on Computer Vision,Rio de Janeiro,Brazil,2007.
  • 10申中华,潘永惠,王士同.有监督的局部保留投影降维算法[J].模式识别与人工智能,2008,21(2):233-239. 被引量:30

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部