期刊文献+

基于加权SVM主动学习的多标签分类 被引量:7

Multi-label Classification Based on Weighted SVM Active Learning
下载PDF
导出
摘要 样本标记是一个重要但又比较耗时的过程。得到一个多标签分类器需要大量的训练样本,而手工为每个样本创建多个标签会存在一定困难。为尽可能降低标记样本的工作量,提出一种加权决策函数的主动学习方法,该方法同时考虑训练样本的数量和未知样本的置信度,使得分类器能在最小的成本下最快地达到比较满意的分类精度。 Manually creating multiple labels for each sample is very important but it is time-consuming.Manually creating multiple labels for each sample may become impractical when a very large amount of data is needed for training multi-label classifier.To minimize the human-labeling efforts,this paper proposes a weighted decision approach,the approach considers quantity and confidence of training samples,it can make the classifier need fewer samples,but achieve a comparative precision.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第8期181-182,185,共3页 Computer Engineering
关键词 主动学习 多标签 支持向量机 训练样本 active learning; multi-label; Support Vector Machine(SVM); training samples;
  • 相关文献

参考文献7

  • 1葛雷,李国正,尤鸣宇.多标记学习的嵌入式特征选择[J].南京大学学报(自然科学版),2009,45(5):671-676. 被引量:12
  • 2秦玉平,王秀坤,艾青,刘卫江.多主题文本分类的实现算法[J].计算机工程,2008,34(2):190-192. 被引量:5
  • 3Li Xuchun, Wang Lei, Sung E. Multi-label SVM Active Learning for Image Classification[C]//Proc. of International Conference on Image Processing. Singapore: [s. n.], 2004: 2207-2210.
  • 4Brinker K. On Active Learning in Multi-label Classification[M]. Berlin, Germany: Springer, 2006.
  • 5Singh M, Curran E, Cunningham E Active Learning for Multi- label Image Annotation[C]//Proc. of the 19th Irish Conference on Artificial Intelligence and Cognitive Science. Cork, Ireland: [s. n.], 2008: 173-182.
  • 6Chang Chin Chang, Lin Chi hjcn. LIBSVM: A Library for Support Vector Machine[EB/OL]. (2010-01-10). http://www.csie.ntu.tw/-cjlinllibsvm.
  • 7袁勋,吴秀清,洪日昌,宋彦,华先胜.基于主动学习SVM分类器的视频分类[J].中国科学技术大学学报,2009,39(5):473-478. 被引量:21

二级参考文献42

  • 1孙晋文,肖建国.基于SVM的中文文本分类反馈学习技术的研究[J].控制与决策,2004,19(8):927-930. 被引量:16
  • 2张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 3李丹,李国正,陆文聪.用于药物活性预报的Co-Training方法[J].计算机科学,2006,33(12):159-161. 被引量:3
  • 4Tong S. Active learning: theory and applications[D]. Ph. D. dissertation, Stanford University, 2001.
  • 5Brinker K. On multiclass active learning with support vector machines [C]// Proceedings of European Conference on Artificial Intelligence. 2004: 969-970.
  • 6Yan R, Yang J, Hauptmann A. Automatically labeling video data using multi-class active learning [C]// Proceedings of the 9th IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2003, 1: 516-523.
  • 7Zhang H J, Kankanhallli A, Smoliar S W. Automatic partitioning of full-motion video [J]. Multimedia Systems, 1993, 1(1). pp: 10-28.
  • 8Lan D J, Ma Y F, Zhang H J. A novel motion-based representation for video mining[C]// Proceedings of IEEE International Conference on Multimedia & Expo. Washington: IEEE Computer Society, 2003: 469-472.
  • 9Vapnik V. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 10Wu T F, Lin C H, Weng R C. Probability estimates for multi-class classification by pairwise coupling[J]. The Journal of Machine Learning Research. 2004, 5: 975-1005.

共引文献35

同被引文献64

  • 1苏高利,邓芳萍.关于支持向量回归机的模型选择[J].科技通报,2006,22(2):154-158. 被引量:59
  • 2赵英刚,陈奇,何钦铭.一种基于支持向量机的直推式学习算法[J].江南大学学报(自然科学版),2006,5(4):441-444. 被引量:8
  • 3WENE,SUNV.新浪微博研究报告[EB/OL].[2011-05-20].http://www.techweb.tom.cn/data/2011-02-25/916941.shtml.
  • 4边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000..
  • 5VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6Zuev D, Moore A W. Traffic Classification Using a Statistical Approach[C]//Proc. of PAM'05. [S. 1.]: Springer-Verlag, 2005.
  • 7Moore A W, Zuev D. Internet Traffic Classification Using Bayesian Analysis Techniques[C]//Proc. of ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. Banff, UK: [s. n.], 2005.
  • 8Li Wei, Marco C, Moore A W. Efficient Application Identification and the Temporal and Spatial Stability of Classification Schema[J]. Computer Networks, 2009, 53(6): 790-809.
  • 9Este A, Gringoli F, Salgarelli L. Support Vector Machines for TCP Traffic Classification[J]. Computer Networks, 2009, 53(14): 2476- 2490.
  • 10Settles B. Active Learning Literature Survey[EB/OL]. (2010- 11-21). http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1. 167.4245.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部