摘要
为提高信用评估的预测精度,提出一种基于装袋的基因表达式编程(GEP)多分类器集成算法。该算法采用Bagging方法将GEP产生的多个差异基分类器进行集成。在德国信用数据库真实数据集上的实验及性能分析表明,该算法较SVM算法的预测精度提高约2.7%;较KNN(K=17)算法的预测精度提高约7.93%;较单GEP分类算法的预测精度提高约1.1%。
To improve the prediction precision in credit evaluation,a novel classifier ensemble algorithm based on Gene Expressiong Programming(GEP) with Bagging,called BGEP-CREDIT,is proposed.The algorithm uses Bagging to combine the several GEP classifiers generated from GEP.Experiments and performance analysis on Germany credit database are given.The results show that compared with SVM algorithm,KNN(K=17) algorithm and a single GEP classifier,the prediction precision is increased by 2.7%,7.93% and 1.1% respectively by using BGEP-CREDIT.
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第8期213-215,共3页
Computer Engineering
基金
西南财经大学"211工程"三期青年教师成长基金资助项目(211QN09071)
西南财经大学科研基金资助项目(QN0806)
关键词
装袋技术
基因表达式编程
信用评估
分类器集成
预测精度
Bagging technology; Gene Expressiong Programming(GEP); credit evaluation; classifier integration; prediction accuracy;