期刊文献+

基于BQPSO的潜水器路径规划算法 被引量:1

Path Planning Algorithm for Underwater Vehicle Based on BQPSO
下载PDF
导出
摘要 在栅格法的自治水下机器人离散工作空间基础上,提出一种基于二进制编码的量子粒子群(BQPSO)算法求解自治水下机器人路径规划问题。该算法将路径表示为粒子位置的二进制编码,以路径长度为适应值,引入交叉策略避免陷入局部最小。仿真实验表明,BQPSO算法可以进行有效的自治水下机器人路径避障。 A method of path planning for underwater vehicle based on Binary Quantum-behaved Particle Swarm Optimization(BQPSO) algorithm is proposed aiming at the grid discrete workspace.In this algorithm,the path is represented as binary code of the particle position.The length of path is set as function fitness and the crossover is introduced to avoid the local minima.Simulation experiments show that BQPSO algorithm can effectively avoid the obstacle of the underwater vehicle.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第8期216-218,共3页 Computer Engineering
基金 上海市晨光计划基金资助项目(2008CG55) 上海市教委创新基金资助项目(10YZ113 10ZZ97)
关键词 粒子群优化算法 量子粒子群优化算法 二进制量子粒子群优化算法 路径规划 Particle Swarm Optimization(PSO) algorithm; Quantum-behaved PSO(QPSO) algorithm; Binary QPSO(BQPSO) algorithm; path planning;
  • 相关文献

参考文献8

  • 1Alvarez A, Caiti A, Onken R. Evolutionary Path Planning for Autonomous Underwater Vehicles in a Variable Ocean[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 418-429.
  • 2张菁,王立权,张铭钧.基于模糊决策法的水下机器人路径规划方法[J].哈尔滨工程大学学报,2001,22(1):49-54. 被引量:10
  • 3秦元庆,孙德宝,李宁,马强.基于粒子群算法的移动机器人路径规划[J].机器人,2004,26(3):222-225. 被引量:42
  • 4Engelbrecht A P, Ismail A. Training Product Unit Neural Networks[J]. Stability and Control: Theory and Applications, 1999, 2(1/2): 59-74.
  • 5Sun J0n, Feng Bin, Xu Wenbo. Particle Swarm Optimization with Particles Having Quantum Behavior[C]//Proc. of IEEE Conference on Evolutionary Computation. Portland, Oregon, USA: IEEE Press, 2004: 325-331.
  • 6Liu Jing, Xu Wenbo, Sun Jun. Quantum-behaved Particle Swarm Optimization with Mutation Operator[C]//Proc. of Tools with Artificial Intelligence Conference. Hong Kong, China: IEEE Press, 2005: 237-240.
  • 7Sun Jun, Xu Wenbo, Liu Jing. Training RBF Neural Network Via Quantum-behaved Particle Swarm Optimization[C]//Proc. of ICONIP'06. Hong Kong, China: [s. n.], 2006:1156-1163.
  • 8任春明,张建勋.基于优化蚁群算法的机器人路径规划[J].计算机工程,2008,34(15):1-3. 被引量:37

二级参考文献13

  • 1张汝波,郭必祥,熊江.基于遗传蚁群算法的机器人全局路径规划研究[J].哈尔滨工程大学学报,2004,25(6):724-727. 被引量:10
  • 2朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:123
  • 3阎平凡.再励学习——原理、算法及其在智能控制中的应用[J].信息与控制,1996,25(1):28-34. 被引量:30
  • 4马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 5Keron Y, Borenstein J. Potential field methods and their inherent limitations for mobile robot navigation [A]. Proceedings of the International Conference on Robotics and Automation [C]. California,1991.1398-1404.
  • 6KennedyJ, Ebethart R C. Particle swarm optimization [A]. Proceedings of the IEEE International Coference on Neural Networks [C]. Piscataway, New Jersey: IEEEE Service Center,1995,4.1942-1948.
  • 7Eberhart R C, Shi Y. Particle swarm optinization: developments, applications and resources [A]. Proceedings of the Congress on Evolutionary Computation 2001 [C]. Piscataway, New Jersey: IEEE Press,2001.81-86.
  • 8Habib M K, Asama H. Efficient method to generate collision free paths for autonomous mobile robot based on new free space structuring approach [A]. IEEE/RSJ International Workshop on Intelligent Robots and Systems[C]. Osaka, Japan:1991.563-567.
  • 9Clerc M, Kennedy J. The particle swarm-explosion, stability and convergence in a multidimensional complex space[J]. IEEE Transaction on Evolutionary Computer,2002,6(1):58-73.
  • 10郭必祥.基于蚁群算法的智能机器人全局路径规划方法研究[D].哈尔滨:哈尔滨工程大学,2005:1.

共引文献85

同被引文献19

  • 1于丽,丁锋,张佳波.多新息随机梯度辨识方法的收敛性研究[J].科学技术与工程,2007,7(21):5475-5478. 被引量:11
  • 2Ridao P, Batlle J. Carreras M. Model identification of a low-speed UUV[C]. Proceedings of the First IFAC Workshop on Guidance and Control of Underwater Vehicles, 2003: 47-52.
  • 3Ding F, Liu P X. Multi-innovation least squares parameter estimation algorithms for stochastic regression models[C]. Proceedings of Instrumentation and Measurement Technology Conference, 2008: 933-938.
  • 4Poli R, Kennedy J, Blackwell T. Particle swarm optimization an overview [J]. Swarm Intelligence, 2007, 1(1): 33-57.
  • 5Sun J, Liu J, Xu W. Solving nonlinear programming problem by quantum-behaved particle swarm optimization [J]. International Journal of Computer Mathematics, 2007, 84(2): 261-27.
  • 6Zhu D, Liu Q, Hu Z. Fault-tolerant control algorithm of the manned submarine with multi-thruster based on Quantum behaved Particle Swarm Optimization [J]. International Journal of Control, 2011, 84(11): 1817-1829.
  • 7Fossen T I. Guidance and control of ocean vehicles [M]. New York: John Wiley and Sons Inc,1994.
  • 8Petrich J, Stilwell D J. Robust control for an autonomous underwater vehicle that suppresses pitch and yaw coupling [J]. Ocean Engineering, 2011, 38(1): 197-204.
  • 9Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation. 2002, 6(1): 58-73.
  • 10Sun J, Feng B, Xu W. A global search strategy of quantum-behaved particle swarm optimization[C]. Cybernetics and Intelligent Systems Proceedings of the 2004 IEEE Conference, 2004:111-116.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部