期刊文献+

基于张量分解的数字图像取证 被引量:1

Digital Image Forensics Based on Tensor Decomposition
下载PDF
导出
摘要 提出一种基于张量分解的数字图像盲检测方法,从全局处理角度对JPEG压缩数字图像进行真伪盲检测。对于来自某一相机拍摄的一批参考图像组成的张量,利用张量分解的方法,从分解残差中分析提取图像特征,通过支持向量机分类器鉴别待检测图像是否直接来自该数码相机。实验结果表明,该方法对数字图像的来源鉴定具有较高准确性和较强的鲁棒性。 A blind digital image forensics method is proposed based on tensor decomposition to detect the authenticity of JPEG compressed image in global processing view.Image features are extracted from decomposition residual,which are obtained via tensor decomposition of a group of reference images shot by the claimed camera.Then the Support Vector Machine(SVM) classifier is applied to classify whether the image is from the claimed camera or not.Experimental results show that this method has high accuracy and strong robust.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第8期225-227,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2008AA01Z117) 国家自然科学基金资助项目(61003136)
关键词 图像盲取证 张量分解 支持向量机 数字图像鉴别 blind image forensics; tensor decomposition; Support Vector Machine(SVM); digital image identification;
  • 相关文献

参考文献7

  • 1李景辉,张晓峰,马燕.纹理合成在图像修复中的应用研究[J].计算机工程,2009,35(7):206-208. 被引量:9
  • 2Choi K S, Lam E Y, Wong K K Y. Source Camera Identification Using Footprints from Lens Aberration[C]//Proceedings of the International Society for Optical Engineering. Bellingham, USA: [s. n.], 2006: 172-179.
  • 3Filler T, Fridrich J, Goljan M. Using Sensor Pattern Noise for Camera Model ldentification[C]//Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, California, USA: IEEE Press, 2008:1296-1299.
  • 4Bayram S, Sencar H T, Memon N, et al. Source Camera Identification Based on CFA Interpolation[C]//Procccdings of the 12th IEEE International Conference on hnage Processing. Genoa, Italy: IEEE Press, 2005: 69-72.
  • 5Long Yangjing, Huang Yizhen. hnage-based Source Camera Identification Using Demosaicking[C]//Proceedings of the 8th International Workshop on Multimedia Signal Processing. Victoria, Canada: [s. n.], 2006: 419-424.
  • 6Lindeberg T. Scale-space Theory in Computer Vision[M]. Stockholm, Sweden: Kluwer Academic Publishers, 1994:31-60.
  • 7Kolda T G, Bader B W. Tensor Decompositions and Applications[J]. SIAM Review, 2009, 51(3): 455-500.

二级参考文献4

  • 1Kang Sungha, Shen Jiahong. Euler's Elastica and Curvature-based Inpainting[J]. SIAM Journal of Applied Mathematics, 2002, 63(2): 564-592.
  • 2Efros A A, Leung T K. Texture Synthesis by Non-parametric Sampling[C]//Proc. of the IEEE Computer Society Int'l Conf. on Computer Vision. Washington D. C., USA: [s. n.], 1999.
  • 3Criminisi A, Perez P, Toyama K. Region Filling and Object Removal by Exemplar-based Image Inpainting[J]. IEEE Trans. on Image Processing, 2004, 13(9): 1200-1212.
  • 4朱为,李国辉,涂丹.纹理合成技术在旧照片修补中的应用[J].计算机工程与应用,2007,43(28):220-222. 被引量:8

共引文献8

同被引文献9

  • 1CORTES C, VAPNIK V. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 2LIN CHUN-FU, WANG SHENG-DE. Fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
  • 3HU RONG-XIANG, JIA WEI, HUANG DE-SHUANG, et al. Maximum margin criterion with tensor representation[J].Neurocomputing, 2010, 73(10/11/12): 1541-1549.
  • 4BOURENNANE S, FOSSATI C, CAILLY A. Improvement of classification for hyperspectral images based on tensor modeling[J].Geoscience and Remote Sensing Letters, 2010, 7(4): 801-805.
  • 5GUO WEIWEI, KOTSIA I, PATRAS I. Tensor learning for regression[J].IEEE Transactions on Image Processing, 2011, 21(2): 816-827.
  • 6ZHANG LEFEI, ZHANG LIANGPEI, TAO DACHENG, et al. A multifeature tensor for remote-sensing target recognition[J].Geoscience and Remote Sensing Letters, 2011, 8(2): 374-378.
  • 7LIU YANG, LIU YAN, CHAN K C C. Tensor-based locally maximum margin classifier for image and video classification[J].Computer Vision and Image Understanding, 2011, 115(3): 300-309.
  • 8FU YUN, HUANG T S. Image classification using correlation tensor analysis[J].IEEE Transactions on Image Processing, 2008, 17(2): 226-234.
  • 9吴飞,刘亚楠,庄越挺.基于张量表示的直推式多模态视频语义概念检测[J].软件学报,2008,19(11):2853-2868. 被引量:10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部