期刊文献+

基于供应曲线的最优变现策略研究 被引量:2

Research on optimal liquidation strategy based on supply curve
下载PDF
导出
摘要 基于供应曲线理论研究了机构投资者的最优变现策略问题.首介绍了供应曲线的相关理论.利用供应曲线,给出了变现策略与变现成本的数学描述.基于极大值原理,获得了问题的解析解,并对经济意义进行了阐述.研究结果表明,当变现速度不受限制时,机构投资者应先买入头寸,到某一时点后,即开始卖出头寸,并且卖出的速度变化量是越来越小,最终以接近恒定速度卖清手中所有的头寸;变现速度受限时,机构投资者应先以较小的速度卖出头寸,逐渐增大卖出速度,直到最大卖出速度,再以较小的速度卖清手中头寸. The optimal liquidation strategies of the institution investor are investigated based on supply curves. Firstly, the theory on supply curve is introduced. Secondly, the liquidation strategy and liquidation cost are provided by utilizing the supply curve. Furthermore, the analytic solution of this problem is obtained based on the maximum principle. Finally, the solution is expatiated in the sense of economic. The result of this paper shows that the institution investor should buy the positions first and then start to sell the positions held after a certain point, furthermore, the change quantity of liquidating speed is smaller and smaller, and ultimately, liquidate all positions held with approximately constant speed if the liquidating speed is not limited. Otherwise, the institution investor should sell the positions held with a slower speed is reached, and then augment gradually the liquidating speed until a maximum liquidating speed, and then liquidate all positions held with a slower speed.
出处 《系统工程学报》 CSCD 北大核心 2011年第2期188-194,共7页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(70671025)
关键词 供应曲线 机构投资者 最优变现策略 supply curve institution investor optimal liquidation
  • 相关文献

参考文献15

  • 1Chan L K C, Lakonishok J. The behavior of stock price around institutional trades[J]. Journal of Finance, 1995, 50(1): 1147 - 1174.
  • 2Bertsimas D, Andrew W L. Optimal control of execution costs[J]. Journal of Financial Markets, 1998, 1(1): 1 - 50.
  • 3Bertsimas D, Lo A W, Hummel P. Optimal control of execution costs for portfolios[J]. Computing in Science & Engineering, 2000, 1(1): 40 - 53.
  • 4Almgren R, Chriss N. Value under liquidation[J]. Risk, 1999, 2(2): 62 - 64.
  • 5Almgren R, Chriss N. Optimal Execution of portfolio transactions[J]. Journal of Risk, 2000, 3(3): 5 - 39.
  • 6Dubil R. How to include liquidity in a market VaR statistic [J]. Journal of Applied Finance, 2003, 4(3): 19 - 28.
  • 7Dubil R. The Modeling of Liquidity in the Value-at-risk Framework[D]. Ithaca, New York: Comell University, 2001:60 - 120.
  • 8刘海龙,仲黎明,吴冲锋.开放式基金流动性风险的最优控制[J].控制与决策,2003,18(2):217-220. 被引量:24
  • 9仲黎明,刘海龙,吴冲锋.机构投资者的最优变现策略[J].管理科学学报,2002,5(5):18-22. 被引量:43
  • 10胡小平,何建敏.非瓦尔拉斯市场下的风险价值[J].系统工程学报,2005,20(5):454-458. 被引量:6

二级参考文献47

  • 1万树平,涂菶生.价量分布下的股票流动性深度的度量[J].系统工程,2004,22(10):40-46. 被引量:6
  • 2房振明,王春峰,曹媛媛.上海证券市场流动性模式的研究[J].管理工程学报,2005,19(2):33-39. 被引量:21
  • 3李忠民,张世英.非均衡蛛网模型的调控研究[J].数量经济技术经济研究,1995,12(8):28-34. 被引量:4
  • 4[1]Perold A. The implementation shortfall: Paper versus reality[J]. J Portfolio Management,1988,14:4-9.
  • 5[2]Bertsima D, Lo A W. Optimal control of liquidation costs[J]. J Financial Markets,1998,1(1):1-50.
  • 6[3]Almgren R, Chriss N. Optimal liquidation[R].Chicago: The University of Chicago,1998.
  • 7[4]Jarrow R A. Market manipulation bubbles, corners andshort squeeze[J]. J Financial Quantity Analysis,1992,27(2):311-336.
  • 8Almgren R, Chriss N. Value under liquidation[J]. Risk, 1999, 12(12): 61-63.
  • 9Bangia A, Diebold F, Schuermann T, et al. Modeling liquidity risk with implications for traditional market risk measurement and management[J]. Risk, 1999, 12: 68-73.
  • 10Jarrow R, Subramanian A. Mopping up liquidity[J]. Risk, 1997, 10: 170-173.

共引文献59

同被引文献19

  • 1李毅学,徐渝,陈志刚.股票质押贷款业务的贷款价值比率[J].系统工程,2006,24(10):55-58. 被引量:11
  • 2储小俊,刘思峰.在随机非线性价格冲击下的最优变现策略研究[J].中国管理科学,2007,15(5):137-142. 被引量:8
  • 3Almgren R, Chriss N. Optimal execution of portfolio transactions[J]. Journal of Risk, 2000, 3(2) : 5 -39.
  • 4Huberman G, Stanzl W. Optimal Liquidity Trading[ R]. Columbia : Columbia University, 2001.
  • 5Almgren R. Optimal execution with nonlinear impact functions and trading-enhanced risk [ J ]. Applied Mathematical Fi- nance, 2003, 10(1) : 1-18.
  • 6Dubil R. Optimal liquidation of large security holding in thin market[ J ]. Journal of Financial Economics, 2002, 5 (2) : 197 - 221.
  • 7Konishi H. Optimal slice of a VWAP trade[J]. Journal of Financial Markets, 2002, 5(2) : 197 -221.
  • 8Mtinch B. Strategic Trading in Illiquid Markets[ M ]. Berlin Heidelberg: Springer-Verlag, 2005.
  • 9Subramanian A. Optimal liquidation by a large investors[ J]. SIAM Journal on Applied Mathematics, 2007, 68 (4) : 1168 - 1201.
  • 10熊熊,张维,李帅,王芳.基于Lotka-Volterra模型的股指期货市场竞争分析[J].系统工程学报,2009,24(5):581-588. 被引量:19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部