期刊文献+

基于本征正交分解的谱表示法模拟风场的误差 被引量:5

Errors produced with proper orthogonal decomposition-based spectral representation method in wind velocity field simulation
下载PDF
导出
摘要 推导了本征正交分解(Proper Orthogonal Decomposition,POD)型谱表示法模拟所得平稳正态脉动风场的偏度误差和随机误差。从POD型谱表示法的模拟公式出发,推导了N变量风场模拟结果序列的样本均值、相关函数、功率谱函数和根方差等前二阶矩统计特征的时域估计表达式;并证明了时域估计相关函数是正态过程,功率谱函数为非正态随机过程。进一步,计算上述样本时域估计二阶矩特征的均值和根方差,即得到了POD型谱表示法模拟所得风场的各统计量时域估计的偏度误差和随机误差,并以此给出了误差计算的通式。算例中统计误差和理论误差值的对比验证了所推导的解析解。 The bias errors and the stochastic errors produced in wind field simulation using a proper orthogonal decomposition(POD)-based spectral representation method were derived.An N-point Gaussian wind field was considered by taking its simulation formulas into account.The temporal first-and second-order statistics of the simulated wind process,i.e.,its mean values,correlation functions,power spectral densities and standard deviations,were derived.Mean values and standard deviations of these derived random variables or processes thus led to the bias errors and the stochastic errors of the temporal sample statistics,respectively.Finally,these closed-form solutions to the errors were validated with a numerical example.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第4期12-15,20,共5页 Journal of Vibration and Shock
基金 国家自然科学基金重大研究计划(90715040) 国家自然科学基金创新群体项目(50621062) 国家科技支撑计划(2006BAJ06B05) 华南理工大学亚热带建筑科学国家重点实验室开放基金(200822) 土木工程防灾国家重点实验室博士后基金(2007-C-01)
关键词 风场模拟 本征正交分解(POD) 谱表示法 误差分析 wind field simulation proper orthogonal decomposition(POD) spectral representation method error
  • 相关文献

参考文献11

  • 1Kareem A. Numerical simulation of wind effecls: A probabilistic perspective [J]. J. Wind Eng. Ind. Aerodyn, 2008, 96( 10 - 11 ) : 1472 - 1497.
  • 2Shinozuka M, Yun C B, Scya H. Stochastic methods in wind enginecring[J]. J. Wind Eng. Ind. Aerodyn, 1990, 36(1-3): 829 - 843.
  • 3Deodatis G. Simulation of ergodic muhivariatc stochastic processes [ J ]. J. Eng. Mech.-ASCE, 1996, 122 (8) : 778 - 787.
  • 4Mignolet M P. Simulation of random processes and fields by ARMA models: A review[ M], Chapter 7, In: Cheng, A HD, Yang, C Y editors, Computational Stochastic Mechanics. Elsevier: 1993, 149 - 173.
  • 5Rossi R, Lazzari M, Vitaliani R. Wind field simulation for structural engineering purposes[JJ. Int. J. Numer. Methods Eng. , 2004, 61(5): 738-763.
  • 6Solari G, Carassale L, Tubino F. Proper orthogonal decomposition in wind engineering. Part 1 : A state-of-the-art and some prospects [ J ]. Wind Struct, 2007, 10 (2) : 153 - 176.
  • 7Carassale L, Solari G, Tubino F. Proper orthogonal decomposition in wind engineering. Part 2: Theoretical aspects and some applications [ J ]. Wind Struct, 2007, 10(2) : 177 -208.
  • 8Chen X, Kareem A. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures [J]. J. Eng. Mech.-ASCE, 2005, 131(4) : 325 -339.
  • 9Grigoriu M, Errors in simulation of random processes[ J]. J. Struct. Eng.-ASCE, 1986, 112(12) : 2697 -2702.
  • 10Novak D, Stoyanoff S, Herda H. Error assessment for wind histories generated by autoregressive method [ J ]. Struet. Saf., 1995, 17(2): 79-90.

二级参考文献17

  • 1李黎,彭元诚,胡亮,樊剑.龙潭河大桥风致抖振时域分析[J].公路,2005,50(11):59-63. 被引量:9
  • 2顾明,陆海峰.膜结构风荷载和风致响应研究进展[J].振动与冲击,2006,25(3):25-28. 被引量:19
  • 3埃米尔·希缪 罗伯特·H·斯坎伦 著 刘尚培 项海帆 谢霁明 译.风对结构的作用-风工程导论(第二版)[M].上海:同济大学出版社,1992..
  • 4JTG/TD60-01-2004.公路桥梁抗风设计规范[S].[S].,..
  • 5Rossi R.,Lazzari M.,Vitaliani R.Wind field simulation for structural engineering purposes[J].International Journal for Numerical Methods in Engineering,2004,61(5):738-763.
  • 6Chen X.,Kareem A.Proper orthogonal decom-position-based modeling,analysis,and simulation of dynamic wind load effects on structures[J].Journal of Engineering Mechanics,2005,131(4):325-339.
  • 7Ding Q S,Zhu L D,Xiang H F.Simulation of stationary Gaussian stochastic wind velocity field[J].Wind and Structures,2006,9(3):231-243.
  • 8Carassale L,Solari G.Monte Carlo simulation of wind velocity fields on complex structures[J].Journal of Wind Engineering and Industrial Aerodynamics,2006,94(5):323-339.
  • 9Shinozuka M,Deodatis G.Simulation of stochastic processes by spectral representation[J].Applied Mechanics Reviews,1991,44(4):191-203.
  • 10Shinozuka M,Deodatis G.Simulation of multi-dimensional Gaussian stochastic fields by spectral representation[J].Applied Mechanics Reviews,1996,49(1):29-53.

共引文献2

同被引文献68

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部